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Figure 1: Overview: LUFFY integrates off-policy reasoning traces into reinforcement learning
by combining them with on-policy rollouts. Policy shaping emphasizes low-probability but crucial
actions, enabling a balance between imitation and exploration for more generalizable reasoning.

Abstract

Recent advances in large reasoning models (LRMs) demonstrate that sophisticated
behaviors such as multi-step reasoning and self-reflection can emerge via reinforce-
ment learning (RL) with simple rule-based rewards. However, existing zero-RL
approaches are inherently “on-policy”, limiting learning to a model’s own outputs
and failing to acquire reasoning abilities beyond its initial capabilities. We intro-
duce LUFFY (Learning to reason Under oFF-policY guidance), a framework that
augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances
imitation and exploration by combining off-policy demonstrations with on-policy
rollouts during training. Notably, we propose policy shaping via regularized im-
portance sampling to avoid superficial and rigid imitation during mixed-policy
training. Remarkably, LUFFY achieves an over +7.0 average gain across six math
benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It
also substantially surpasses imitation-based supervised fine-tuning (SFT), particu-
larly in generalization. Analysis shows LUFFY not only imitates effectively but
also explores beyond demonstrations, offering a scalable path to train generalizable
reasoning models with off-policy guidance.
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Figure 2: Overall performance across six competition-level benchmarks (AIME 2024, AIME 2025,
AMC, MATH-500, Minerva Math, and OlympiadBench). LUFFY achieves an average score of 49.6,
delivering a substantial performance gain of over +7.0 points on average compared to existing zero
reinforcement learning methods.

1 Introduction

Recent breakthroughs in large reasoning models, including OpenAI-o1 [1], DeepSeek-R1 [2], and
Kimi-1.5 [3], have demonstrated remarkable capabilities in complex reasoning tasks. These mod-
els have shown unprecedented proficiency in generating extensive Chains-of-Thought (CoT, [4])
responses and exhibiting sophisticated behaviors, such as self-reflection and self-correction. Particu-
larly noteworthy is how these achievements have been realized through reinforcement learning with
purely rule-based rewards, as demonstrated by DeepSeek-R1. The emergence of long CoT reasoning
and self-reflection capabilities through such straightforward reward mechanisms, termed the “aha
moment”, represents a significant advancement in the field.

One crucial paradigm behind the success is known as zero-RL [2, 5, 6, 7], which applies reinforce-
ment learning to base language models directly, eliciting reasoning potentials using models’ own
rollouts. Nevertheless, it has a fundamental limitation worth highlighting: it is inherently “on-policy”,
constraining learning exclusively to the model’s self-generated outputs through iterative trials and
feedback cycles. Despite showing promising results, zero-RL is bounded by the base LLM itself [8].
In essence, reinforcement learning under this setting amplifies existing behaviors rather than introduc-
ing genuinely novel cognitive capacities. Recent study [9] corroborates this constraint, demonstrating
that models like Llama 3.2 [10] quickly reach performance plateaus under zero-RL training precisely
because they lack certain foundational cognitive behaviors necessary for further advancement.

This inherent limitation provokes critical questions about the effectiveness and scope of learning
within the zero-RL paradigm: How can we empower LLMs to acquire reasoning behaviors surpassing
their initial cognitive boundaries? A natural approach to introduce external guidance from a stronger
policy is imitation learning, wherein models are fine-tuned using reasoning traces produced by
powerful LRMs like DeepSeek-R1 [2, 11, 12]. However, recent research [13, 14] raise concern about
the generalization limits learned via pure imitation, which locks models into superficial and rigid
reasoning models that impede further learning. Meanwhile, off-policy learning, which has proven
powerful in various RL tasks for expanding learning beyond an agent’s initial capabilities [15, 16],
remains largely unexplored in zero-RL. This leaves open critical questions about how to effectively
incorporate off-policy knowledge alongside the exploration of on-policy learning, beyond simple
imitation learning.

In this work, we aim to integrate off-policy guidance wihtin the unified zero-RL paradigm, and
introduce LUFFY: Learning to reason Under oFF-policY guidance. Based on conventional zero-RL
methods such as GRPO [17], LUFFY introduces off-policy reasoning traces (e.g., from DeepSeek-R1)
and combines them with models’ on-policy roll-outs before advantage computation, as illustrated in
Figure 1. Intuitively, since off-policy traces consistently obtain positive rewards, LUFFY enables

2



the model to selectively imitate these high-quality reasoning traces when its own roll-outs fail to
achieve correctness, while preserving the capacity for self-driven exploration whenever its generated
reasoning steps are successful. In this way, LUFFY achieves a dynamic and adaptive equilibrium
between imitation and exploration. However, naively combining off-policy traces can lead to overly
rapid convergence and entropy collapse, causing the model to latch onto superficial patterns rather
than acquiring genuine reasoning capabilities. To address these issues, we introduce policy shaping
via regularized importance sampling, which amplifies learning signals for low-probability yet crucial
actions under off-policy guidance. This mechanism encourages the model to preserve exploration
throughout training, ultimately enabling it to internalize deeper and more generalizable reasoning
behaviors.

As shown in Figure 2, LUFFY achieves clear improvements of +7.0 points on average compared with
previous RL-zero methods, across AIME24/25 [18], AMC [18], OlympiadBench [19], Minerva [20],
and MATH-500 [21] benchmarks, establishing the effectiveness of off-policy learning in zero-like
paradigms. Moreover, LUFFY demonstrates superior generalization capability, i.e., an advantage
of over +6.2 points on average, on out-of-distribution tasks, where SFT falls short. Empirical
results demonstrate that LUFFY encourages the model to imitate high-quality reasoning traces while
maintaining exploration of its own sampling space. This aligns with our deeper analysis, revealing that
LUFFY assimilates off-policy reasoning behaviors flexibly and effectively, while SFT confines the
model to rigid memorization of external reasoning patterns, hindering generalization and exploration.

2 Learning to Reason under Off-Policy Guidance

To facilitate exploration beyond the model’s own capabilities, we incorporate off-policy guidance,
i.e., off-the-shelf reasoning trajectories generated by a stronger reasoning model such as Deepseek
R1, into the zero-RL learning. We expect the model to learn generalizable knowledge from off-policy
beyond superficial imitation and maintain effective and efficient exploration as in zero-RL training.

In the following sections, we first introduce the RL backbone algorithm, GRPO, followed by an
illustration of mixed-policy GRPO, which naively integrates off-policy traces. Finally, we introduce
LUFFY, leveraging policy shaping to mitigate entropy collapse and encourage continuous exploration.

2.1 GRPO and Importance Sampling

Due to the success of Deepseek-R1 [2], GRPO [17] becomes the de facto approach with zero-RL
training. Compared to the widely used PPO [22], GRPO uses the reward scores of N sampled
solutions from a query to estimate the advantage and thus remove the need for an additional value
model. Formally, we denote the policy model before and after the update as πθold and πθ. Given a
question q, a set of solutions τi generated by πθold , and the reward function R(·), the GRPO objective
is defined as follows:

JGRPO(θ) =
1∑N

i=1 |τi|

N∑
i=1

|τi|∑
t=1

min[ri,t(θ)Ai, clip(ri,t(θ); 1− ϵ, 1 + ϵ)Ai]− β · DKL[πθ∥πref]

where ri,t(θ) =
πθ(τi,t|q, τi,<t)

πθold(τi,t|q, τi,<t)
, Ai =

R(τi)− mean({R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , N})
std({R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , N})

.

(1)
DKL is the KL divergence. In the RL objective, GRPO follows PPO, using the importance sam-
pling (ri,t in Eq.1) to calibrate the gradient as the rollouts are generated by πθold .

The clipping term with clip ratio ϵ empirically ensures that the current policy πθ is within the trust
region [23] of the old policy πθold . We loosely categorize this method as On-Policy RL, indicating that
the model is optimized using samples drawn from distributions closely aligned with its current policy.
Nevertheless, recent practices [24, 25, 7] have increasingly omitted the KL divergence term, making
these methods somewhat “less On-Policy”.
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2.2 Mixed-Policy GRPO

We incorporate off-policy rollouts in GRPO by adding them directly to the group of on-policy rollouts
generated by the model itself. Provided an off-policy distribution πϕ, this would affect the advantage
computations in the following way,

Âi =
R(τi)− mean(Gon ∪ Goff)

std(Gon ∪ Goff)
, (2)

where Gon = {R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , Non} and Goff = {R(τj) | τj ∼ πϕ(τ), j =
1, 2, . . . , Noff}. This group computation naturally assigns higher advantage to off-policy rollouts
when the model struggles to generate correct solutions independently, while on-policy rollouts
take precedence once the model begins producing successful reasoning traces, thereby encouraging
self-driven exploration.

However, this mixed advantage computation introduces bias into the estimate of the policy gradient
algorithm [26], which assumes the policy distribution generates the rollouts. In our preliminary
experiments, this would lead to a huge performance drop in the training process. Therefore, we
use importance sampling to calibrate gradient estimates and refer to this approach as Mixed-Policy
GRPO:

∇θJ (θ) = Eτj∼πθ(τ)

[
∇θ log πθ(τj)Âj

]
= Eτj∼πϕ(τ)

[
πθ(τj)

πϕ(τj)
∇θ log πθ(τj)Âj

]
.

(3)

The importance sampling term effectively corrects the gradient from expectation of πθ (red) to
πϕ (blue). This contrasts with the importance sampling term ri,t(θ) used in on-policy RL (Eq. 1),
where the denominator corresponds to the pre-update roll-out model policy πθold . Since the divergence
between πθ and πθold is typically much smaller than that between πθ and the off-policy policy πϕ, the
importance sampling ratio in Eq. 3 tends to be smaller, serving to calibrate gradient estimates from a
distinct distribution.

The RL objective of Mixed-Policy GRPO is extended from the original GRPO objective (Equation 1).

JMixed(θ) =
1

Z
(

Noff∑
j=1

|τj |∑
t=1

min[r̂j,t(θ, ϕ)Âj , clip(r̂j,t(θ, ϕ); 1− ϵ, 1 + ϵ)Âj ]︸ ︷︷ ︸
off-policy objective

+

Non∑
i=1

|τi|∑
t=1

min[ri,t(θ)Âi, clip(ri,t(θ); 1− ϵ, 1 + ϵ)Âi])︸ ︷︷ ︸
on-policy objective

,

where r̂j,t(θ, ϕ) =
πθ(τj,t|q, τj,<t)

πϕ(τj,t|q, τj,<t)
and ri,t(θ) =

πθ(τi,t|q, τi,<t)

πθold(τi,t|q, τi,<t)
.

(4)

Z =
∑Noff

j=1 |τj |+
∑Non

i=1 |τi| is the normalization factor. Based on the theoretical analysis of stochastic
gradient descent in nonconvex optimization [27], we give a convergence analysis in Theorem 1 to
show that our importance-weighted policy gradient estimator in Eq. (3) stabilizes and converges to a
stationary point, and the convergence rate is O(1/

√
K), where K is the total number of iterations.

The proof can be found in Appendix A.

Theorem 1. Suppose the objective function of the policy gradient algorithm J ∈ Jn, where Jn is the
class of finite-sum Lipschitz smooth functions, has σ-bounded gradients, and the importance weight

w = πθ/πϕ is clipped to be bounded by [w,w]. Let αk = α = c/
√
K where c =

√
2(J(θ∗)−J(θ0))

Lσ2ww ,
and θ∗ is an optimal solution. Then, the iterates of our algorithm in Eq. (3) satisfy:

min
0≤k≤K−1

E[||∇J(θk)||2] ≤

√
2(J(θ∗)− J(θ0))Lw

Kw
σ.
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The importance sampling ratio in off-policy learning typically involves πϕ, representing the behavior
policy’s probability in off-policy trajectories [28]. Theoretically, our derivations and guarantees
hold for any well-defined πϕ distribution. In practice, to facilitate direct integration of high-quality
demonstrations from large, powerful models (e.g., DeepSeek-R1), we adopt πϕ = 1 for computational
efficiency. This practical choice avoids the complexity caused by different tokenization between the
on-policy and off-policy models. It facilitates easy incorporation of off-the-shelf datasets without
recomputation of πϕ, as well as preserving theoretical guarantees. In addition, we omit the clip
operation for the off-policy rollouts, as the clip operation will be imbalanced when πϕ = 1. The
follow subsections illustrate LUFFY, which integrates policy shaping into Mixed-Policy GRPO.

2.3 Policy Shaping via Regularized Importance Sampling

While Mixed-Policy GRPO incorporates off-policy rollouts successfully via importance sampling,
a new practical challenge emerges: importance sampling accelerates convergence but significantly
reduces exploration (Figure 3, left). Specifically, entropy collapses much faster than in on-policy
RL, indicating increasingly deterministic rollouts and a diminished capacity for exploring diverse
reasoning trajectories.

This originates from the “hacking” of the Mixed-Policy objective. When combining both learning
off-policy and on-policy signals, the model tends to quickly converge toward reinforcing off-policy
tokens that are also likely in the on-policy πθ distribution, and ignoring off-policy tokens that are
deviated from the model’s original policy, i.e., low-probability tokens that may represent essential
reasoning capabilities the model has yet to acquire. We empirically analyze this issue in detail in
Section 4.2.

To address this issue, we introduce policy shaping via regularized importance sampling, a technique
that re-weights the gradient of off-policy distributions to enhance learning from low-probability tokens.
In particular, our approach replaces the importance sampling ratio πθ(τj,t|q, τj,<t)/πϕ(τj,t|q, τj,<t)
with f(πθ(τj,t|q, τj,<t)/πϕ(τj,t|q, τj,<t)), where f(·) represents a transformation function that alters
the dynamics between off-policy and on-policy distributions, thereby increasing gradient emphasis
on tokens with low probability in the model’s standard distribution. Recall that we omit the clip
operation for the off-policy rollouts. The loss function with policy shaping can be written as below:

JSHAPING(θ) =
1

Z
(

Noff∑
j=1

|τj |∑
t=1

f(r̂j,t(θ, ϕ)) · Âj

+

Non∑
i=1

|τi|∑
t=1

min[ri,t(θ) · Âi, clip(ri,t(θ); 1− ϵ, 1 + ϵ) · Âi]),

where r̂j,t(θ, ϕ) =
πθ(τj,t|q, τj,<t)

πϕ(τj,t|q, τj,<t)
and ri,t(θ) =

πθ(τi,t|q, τi,<t)

πθold(τi,t|q, τi,<t)
.

(5)

To further illustrate the meaning of shaping function f , we derive the gradient of off-policy objective
as follows,

∇θJSHAPING-OFF(θ) = Eτ∼πϕ

[
∇θf(

πθ

πϕ
) · Âj

]
= Eτ∼πϕ

[
f ′(

πθ

πϕ
)
1

πϕ
∇θπθ · Âj

]

= Eτ∼πϕ

f ′(πθ)
πθ

πϕ
∇θ log πθ · Âj︸ ︷︷ ︸

importance sampling

.


(6)

We write π(τj,t|q, τj,<t) as π for simplicity. From the derivation, we can see f ′(πθ) is a weighting
function of the gradient. The vanilla mixed-policy GRPO can be regarded as using a linear shaping
function, i.e., f(π) = π, where the original importance sampling ratio πθ/πϕ is applied.
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Figure 3: Left: generation entropy during training; Middle: shaping function value w.r.t. action
probability; Right: gradient weights w.r.t. action probability.

For further insights on how f ′(·) changes the model behavior, we can decompose the log probability
and derive the gradient on each output logit:

∂JSHAPING-OFF(θ)

∂Mθ(τ ′j,t)
= Eτ∼πϕ

[
f ′(πθ)πθ

[
I(τ ′j,t = τj,t)− πθ

]
· Âj

]
⇒|∂JSHAPING-OFF(θ)

∂Mθ(τ ′j,t)
| ≤ Eτ∼πϕ

[
|f ′(πθ)|πθ (1− πθ) · |Âj |

]
,

(7)

where τ ′j,t is any possible action/token on in the action space at the j-th trajectory and t-th position,
and Mθ(τ) denotes the logits of that action. The identity case represents the gradient when the action
is the off-policy action τ = τ ′, which elevates the probability of predicting the off-policy action.
From Equation 7, we can see that the scale of gradient is upper-bounded by πθ(1− πθ), leading to
small values when πθ → 0 and πθ → 1. To encourage low-probability yet crucial actions, we use
the f(x) = x/(x+ γ) as our shaping function (middle part of Figure 3), where γ is set as 0.1 for all
experiments.

Considering the identity case (τ = τ ′) and πϕ = 1, the gradient with policy shaping can be written
as:

⇒ Eτ∼πϕ

[
γ

(πθ + γ)2
πθ (1− πθ) · Âj

]
. (8)

As shown in Figure 3 (Right), the shaping function reweights the gradients to assign more importance
to low-probability actions, thereby improving learning from unfamiliar yet effective decisions from
the off-policy traces.

2.4 Removing On-policy Clip
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In PPO, the clipping mechanism is introduced to constrain policy
updates within a trust region [23], thereby ensuring stable training.
However, when incorporating off-policy guidance, the target be-
havior may deviate significantly from the model’s current policy,
especially early in training.

As shown in Figure 4, LUFFY experiences more frequent clipping
compared to On-Policy RL, which can suppress learning from
high-quality off-policy traces. To address this, we remove the on-
policy clip to allow greater flexibility in updating toward unfamiliar
yet effective actions, thereby unlocking the model’s capacity to better
integrate off-policy reasoning behaviors.
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3 Experimental Setup

Dataset Construction. Our training set is a subset of OpenR1-Math-220k [29]3, of which the
prompts are collected from NuminaMath 1.5 [30], and the off-policy reasoning traces are generated
by Deepseek-R1 [2]. We use the default subset, which contains 94k prompts, and we filter out
generations that are longer than 8192 tokens and those that are verified wrong by Math-verify4,
resulting in 45k prompts and off-policy reasoning traces.

RL Practice. We remove the KL loss term by setting β = 0 and set entropy loss coefficient to
0.01 (Equation 1). Following Dr.GRPO[6], we remove the length normalization and standard error
normalization of GRPO loss (Equation 1) for all experiments. For policy shaping, we empirically
set the γ as 0.1. Our rollout batch size is 128, and the update batch size is 64. We use 8 samples
per prompt. Specifically, for on-policy RL, we use 8 on-policy samples. For our methods, we use 1
off-policy and 7 on-policy samples to ensure fairness. We use temperature=1.0 for rollout generation.

Training. We use Qwen2.5-Math-7B [31] by default following previous work [24, 5, 6]. In addition
to Qwen2.5-Math-7B, we extend LUFFY to Qwen2.5-Math-1.5B [31] and Qwen2.5-Instruct-7B [32].
Since the context length of Qwen2.5-Math is 4096 and the generation length of off-policy samples
could be lengthy, we change the rope theta from 10000 to 40000 and extend the window size to
16384. The learning rate is constantly set as 1e-6. We train 500 steps for RL models. For the SFT
baselines, we train all models for three epochs. All training experiments are conducted using 8 A100
GPUs. All our trained models share the same system prompt for training and inference:

System Prompt. Your task is to follow a systematic, thorough reasoning process before
providing the final solution. This involves analyzing, summarizing, exploring, reassessing,
and refining your thought process through multiple iterations. Structure your response into
two sections: Thought and Solution. In the Thought section, present your reasoning using the
format: “<think>\n thoughts </think>\n”. Each thought should include detailed analysis,
brainstorming, verification, and refinement of ideas. After “</think>\n” in the Solution
section, provide the final, logical, and accurate answer, clearly derived from the exploration
in the Thought section. If applicable, include the answer in \boxed{} for closed-form results
like multiple choices or mathematical solutions.

Evaluation. For evaluation, we mainly focus on six widely used math reasoning benchmarks,
including AIME 2024, AIME 2025, AMC [18], Minerva [20], OlympiadBench [19], and MATH-
500 [21]. For AIME 2024, AIME 2025 and AMC, we report avg@32 as the test set is relatively small,
and for the other three benchmarks, we report pass@1. As our RL training mainly focuses on math
reasoning, we further validate the generalization capability on three out-of-distribution benchmarks,
namely ARC-c [33](Open-Domain Reasoning), GPQA-diamond [34](Science Graduate Knowledge),
and MMLU-Pro [35](Reasoning-focused Questions from Academic Exams and Textbooks). We
shuffle the multiple-choice options to avoid contamination. For testing, the temperature is set as 0.6.

Reward Function. We use the rule-based reward, verified by Math-Verify.

R(q, τ) =

{
1 if τ outputs the correct final answer to q

0 otherwise
(9)

4 Experimental Results

Baseline Methods. For zero-RL methods, we consider the following methods: (1) Simple-RL [5]:
training from Qwen2.5-Math-7B using rule-based reward; (2) Oat-Zero [6]: training from Qwen2.5-
Math-7B and rule-based reward, proposing to remove the standard deviation in GRPO advantage
computation and token-level normalization in policy loss computation; (3) PRIME-Zero [24]: using
policy rollouts and outcome labels through implict process rewards; (4) OpenReasonerZero [7]: a

3https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
4https://github.com/huggingface/Math-Verify
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Table 1: Overall performance on six competition-level reasoning benchmarks based on Qwen2.5-
Math-7B-Base. Our method outperforms previous approaches with zero RL paradigm and achieves
significant improvement over on-policy RL and SFT baselines. Bold and underline represent the 1st
and 2nd in performance.

Model AIME 24 AIME 25 AMC MATH-500 Minerva Olympiad Avg.
Qwen2.5-Math [31] 12.9 4.2 32.6 48.8 10.7 14.8 20.7
Qwen2.5-Math-Instruct [31] 11.4 8.8 48.3 81.2 33.1 38.8 36.9

SimpleRL-Zero [5] 26.3 6.7 55.4 74.4 25.7 35.4 37.3
OpenReasoner-Zero [7] 17.2 15.0 52.3 84.6 33.8 47.1 41.7
PRIME-Zero [24] 17.9 14.7 55.2 79.4 38.2 42.2 41.3
Oat-Zero [6] 31.7 11.0 61.6 79.2 29.8 42.5 42.6

SFT 28.6 23.5 59.0 86.0 37.5 51.1 47.6
On-Policy RL 24.6 15.7 61.3 84.6 34.9 47.9 44.8
LUFFY 29.5 23.2 66.1 88.4 33.8 56.4 49.6

Table 2: Overall out-of-distribution performance on three benchmark datasets (based on Qwen2.5-
Math-7B-Base).

Model ARC-c GPQA-diamond MMLU-Pro Avg.
Qwen2.5-Math-7B-Base [31] 18.2 11.1 16.9 15.4
Qwen2.5-Math-7B-Instruct [31] 70.3 24.7 34.1 43.0

SimpleRL-Zero [5] 30.2 23.2 34.5 29.3
OpenReasoner-Zero [7] 66.2 29.8 58.7 51.6
PRIME-Zero [24] 73.3 18.2 32.7 41.4
Oat-Zero [6] 70.1 23.7 41.7 45.2

SFT 75.2 24.7 42.7 47.5
On-Policy RL 82.3 40.4 49.3 57.3
LUFFY 80.5 39.9 53.0 57.8

recent open-source implementation of zero-RL methods. Except zero-RL approaches from previous
work, we consider two more baselines with our setting (1) On-Policy RL – we train on-policy RL
with zero-RL paradigm using Dr.GRPO with the same reward and data. (2) SFT – we train the model
with the same prompts and reasoning traces as LUFFY using SFT.

4.1 Main Results

Reasoning Benchmark Performance. Our main results are presented in Table 1, comparing
LUFFY against representative zero-RL baselines of similar computational complexity, including
our reproduced On-Policy RL. All prior methods are built upon Qwen-7B base models, differing
in dataset composition (source and difficulty) and optimization strategies, e.g., removing length
and standard error normalization [6] or incorporating process-level rewards [24]. Evaluated on six
challenging competition-level benchmarks, LUFFY achieves an average score of 49.6, outperforming
existing zero-RL methods by a substantial margin of +7.0 points, establishing a new state-of-the-art.
Notably, while LUFFY exhibits comparable performance in AIME 24, it demonstrates a significantly
greater advantage on the newly released AIME 25 test set (+8.2), demonstrating its generalization to
internalize nuanced reasoning behaviors from off-policy traces. Compared to our zero-RL replication,
i.e., On-Policy RL, LUFFY improves performance by +4.8 points on average, clearly demonstrating
the benefit of integrating high-quality off-policy traces into the RL training loop. Moreover, compared
to its SFT counterpart, our method achieves a notable improvement of +2.0 points on average,
providing a more robust and effective alternative for distilling knowledge from stronger LRMs,
traditionally achieved through supervised fine-tuning [2, 11, 12].

Out-of-Distribution Generalization. We further investigate the generalization capabilities of our
method beyond mathematical reasoning, using three challenging out-of-distribution benchmarks, as
summarized in Table 2. LUFFY demonstrates considerable performance gains over previous zero-RL
practices. Although SFT achieves competitive results on mathematical reasoning tasks (Table 1), it
struggles to generalize effectively to domains significantly different from its training distribution,
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Figure 5: Training dynamics of LUFFY compared with on-policy RL. Left: outcome training rewards;
Middle: generation length; Right: generation entropy.

such as open-domain reasoning (ARC-C), graduate-level science knowledge (GPQA-diamond), and
general academic knowledge (MMLU-Pro). In contrast, LUFFY matches the strong performance of
On-Policy RL on ARC-C and GPQA-diamond and substantially outperforms it on the MMLU-Pro
benchmark, achieving comparable average results. Notably, compared to Qwen2.5-Math-7B-Instruct,
LUFFY achieves considerable improvements in both specialized reasoning tasks (+12.7 points on
average, Table 1) and OOD tasks (+14.8 points on average), all while utilizing significantly less
training data and computational resources. These findings underscore the effectiveness of LUFFY
in leveraging off-policy reasoning guidance for enhanced generalization across diverse, out-of-
distribution tasks.

4.2 Training Dynamics of LUFFY

Strategically Learning from Guidance. Figure 5 illustrate the training dynamics regarding training
rewards, generation length and entropy for On-Policy RL and LUFFY. Initially, LUFFY primarily
imitates off-policy trajectories, as indicated by the increasing generation length gradually aligning
with the off-policy reasoning traces (middle part of Figure 5). At this early stage, imitation dominates,
causing an initial performance dip (left part of Figure 5) as the model adjusts to external guidance.
As training progresses, on-policy rollouts gradually become more prominent, fostering independent
exploration within the model’s own sampling space while effectively retaining insights gained from
off-policy demonstrations. This guided exploration brings growing advantages (training rewards)
over On-Policy RL. Consequently, LUFFY achieves a dynamic balance between imitation and
exploration, leading to more effective off-policy learning (Section 5). These results highlight that
LUFFY selectively adopts valuable reasoning patterns rather than blindly imitating off-policy traces.

Maintaining Exploration. Figure 5 (Right) illustrates that LUFFY consistently sustains higher
entropy compared to On-Policy RL throughout the entire training process. Specifically, the gen-
eration entropy of On-Policy RL rapidly converges to nearly zero after approximately 200 steps,
indicating a highly deterministic policy with limited exploration potential. Conversely, the elevated
entropy observed in LUFFY allows continuous exploration of less confident yet potentially superior
policies, facilitating the discovery and learning of novel cognitive behaviors. Interestingly, we observe
entropy fluctuations and even occasional increases, such as between steps 200 and 250, reflecting
ongoing exploration of low-probability but crucial actions, also referred to as pivotal tokens [36, 25].
This strategic exploration enables the model to escape local optima, thus improving its convergence
towards more globally optimal solutions.

4.3 Ablation Study

In this section, we perform an ablation study to examine the contributions of LUFFY compo-
nents, as summarized in Table 3. Shaping and NoClip both positively contribute to the fi-
nal performance of Mixed-Policy training. However, applying these enhancements without
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Table 3: Ablation study on LUFFY components.

Model AIME 24 AIME 25 AMC MATH-500 Minerva Olympiad Avg.
Mixed-Policy RL 19.2 16.9 58.7 83.8 30.9 49.9 43.2

+ Shaping 30.0 22.6 61.7 86.2 36.4 55.6 48.7
+ Shaping + NoClip 29.5 23.2 66.1 88.4 33.8 56.4 49.6

On-Policy RL 24.6 15.7 61.3 84.6 34.9 47.9 44.8
+ Shaping 21.8 14.7 57.6 81.6 33.5 44.6 42.3
+ No Clip 22.7 17.3 61.6 83.4 34.9 50.7 45.1

Table 4: Overall performance on six competition-level benchmark performance on Qwen2.5-Math-
1.5B and Qwen2.5-Instruct-7B.

Model AIME 24 AIME 25 AMC MATH-500 Minerva Olympiad Avg.
Qwen2.5-Math-1.5B

Qwen2.5-Math-1.5B-Base [31] 7.9 4.7 26.4 31.0 12.1 21.5 17.3
Qwen2.5-Math-1.5B-Instruct [31] 11.4 8.5 47.4 75.2 27.6 38.7 34.8

SFT 15.2 14.3 43.5 74.8 30.9 36.9 40.3
On-Policy RL 12.6 6.5 42.6 68.8 22.1 34.4 36.1
LUFFY 15.2 12.7 46.8 79.4 26.5 42.4 42.1

Qwen2.5-Instruct-7B

Qwen2.5-7B-Instruct [32] 11.9 7.6 44.1 74.6 30.5 39.7 34.7

SFT 9.7 11.3 41.8 71.2 26.8 38.1 33.1
On-Policy RL 16.5 10.7 47.5 75.8 35.3 41.9 37.9
LUFFY 16.6 15.7 52.2 81.4 36.8 48.7 41.9

off-policy guidance (On-Policy + No Clip/Shaping) does not yield improvement, underscor-
ing the necessity of external signals to acquire nuanced and generalizable reasoning skills.
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Figure 6: Validation performance during train-
ing.

Additionally, Figure 6 illustrates the valida-
tion performance throughout training to pro-
vide insights into the training dynamics. No-
tably, Mixed-Policy demonstrates rapid ini-
tial improvement, substantially outperforming
On-Policy RL during early stages. However,
as training progresses, its performance con-
verges to that of On-Policy RL.

These observations align with our earlier dis-
cussion on entropy collapse (Section 2.3), high-
lighting that directly integrating off-policy traces
accelerates convergence but fails to prevent the
model from becoming trapped in local optima.
Conversely, policy shaping acts as an effective
regularizer, mitigating premature convergence
and consistently enlarging performance advan-
tages in later training phases. This benefit is
further amplified when removing the on-policy
clip, enabling parameter updates that support
more aggressive and effective exploration.

4.4 Extension to More Models

To assess the general applicability of our method, we extend LUFFY to a smaller base model: Qwen2.5-
Math-1.5B. We also consider Qwen2.5-Instruct-7B to validate LUFFY on non-zero RL paradigm,
i.e., RL on SFT models. Table 4 presents the performance across six challenging competition-level
benchmarks. On both models, LUFFY achieves consistent and substantial improvements, surpassing
both SFT and On-Policy RL. On Qwen2.5-Math-1.5B, LUFFY attains an average score of 42.1,
demonstrating notable gains of +1.8 and +6.0 points over SFT and On-Policy RL, respectively.
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Similar advantages are observed on the Qwen2.5-Instruct-7B model, where LUFFY consistently
outperforms baselines across all benchmarks. Particularly, it achieves a overall score of 41.9,
representing clear improvements of +8.8 points over SFT and +4.0 points compared with On-Policy
RL.

5 Analysis

In this section, we analyze how LUFFY effectively leverages off-policy guidance, i.e., imitating to
illuminate, to improve reasoning quality and generalization.

LUFFY Selectively Learns Off-policy Traces. Imitation behavior can be observed through the
similarity between model outputs and off-policy traces. To quantify this, we compare generations
from SFT, On-Policy RL, and LUFFY against those from DeepSeek-R1 on a held-out set of 1,000
samples, using BLEU [37] as the similarity metric. The resulting BLEU scores are 57.5 for SFT, 8.8
for On-Policy RL, and 44.8 for LUFFY, reflecting the strong imitation behavior of SFT and the more
selective, yet substantial, imitation in LUFFY.
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Figure 7: Generation length of correct and
incorrect solutions.

LUFFY Learns Off-policy Traces More Effec-
tively. We compare the generation length distri-
butions of LUFFY and SFT on the combined set
of six mathematical reasoning benchmarks. As
shown in Figure 7, LUFFY produces significantly
shorter generations on average (2,832 tokens) com-
pared to SFT (4,646 tokens), suggesting a more
effective reasoning process that balances imitation
and exploration. In contrast, SFT often mimics the
surface form of off-policy demonstrations without
genuinely engaging in problem-solving. This be-
havior is especially evident in incorrect outputs,
where SFT frequently generates overly long and
ultimately unproductive reasoning traces. These
results indicate that while both methods are ex-
posed to similar off-policy signals, LUFFY learns
to selectively internalize useful reasoning patterns,
whereas SFT tends to overfit to superficial features
of the off-policy data. We present a case study in
Appendix B.
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Figure 8: Pass@8 accuracy (on the
merge sets of AIME 2024 and AMC)
under different generation tempera-
tures.

LUFFY Can Explore During Test-time While SFT Can-
not. We compute pass@8 accuracy on the combined
AIME 2024 and AMC datasets, varying the generation
temperature from 0.1 to 1.0. As shown in Figure 8, both
RL-based methods (On-Policy RL and LUFFY) exhibit
strong exploratory capabilities, with pass@8 improving
as the temperature increases, showing potentials in scal-
ing test-time compute [38]. In contrast, although SFT
performs comparably to LUFFY under near-deterministic
decoding (temperature 0.1), its performance deteriorates
at higher temperatures, failing to uncover additional cor-
rect reasoning paths. This highlights the fragility and
limited adaptability of SFT, which aligns with prior find-
ings [13, 14] that suggest SFT tends to memorize reason-
ing patterns rather than learning generalizable reasoning
capability.
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6 Related Work

RL for LRMs Recent advances have demonstrated remarkable progress in enhancing LLMs’
reasoning capabilities through reinforcement learning approaches [2, 1, 3, 39]. DeepSeek R1 pi-
oneered a simple yet effective rule-based reward model, while OpenAI’s O1 advanced the field
with step-by-step natural language feedback for precise policy optimization. Kimi 1.5 further con-
tributed by introducing long-to-short optimization techniques for improved reasoning efficiency.
Subsequent work has expanded the frontiers of chain-of-thought reasoning. BOLT [40] presented a
novel three-stage framework for bootstrapping long chain-of-thought capabilities without relying on
model distillation. LIMO [12] challenged conventional wisdom by showing that complex reasoning
emerges from minimal, strategically curated examples. Concise Reasoning [41] further advanced the
field through innovative RL-guided techniques for reasoning optimization. Significant methodologi-
cal contributions have emerged in training and optimization approaches. TRPA [42] introduced a
robust RL algorithm specifically designed for reasoning enhancement, while SimpleRL-Zoo [43]
provided a comprehensive empirical study of zero-shot RL applications. Light-r1 [44] demonstrated
the effectiveness of combining curriculum learning with DPO, and ThinkPO [45] introduced novel
mechanisms for reasoning preference alignment. However, these methods either use supervised
fine-tuning which shows limited generalization compared to RL approaches, or employ pure RL
approaches that face efficiency challenges in exploration. Our work leverages high-quality off-policy
data to enhance RL exploration efficiency while preserving the benefits of on-policy learning.

On-Policy and Off-Policy RL Reinforcement learning methods can be broadly categorized into
on-policy and off-policy approaches based on how they use collected experiences for policy updates.
On-policy methods, including TRPO [23], A2C/A3C [46], ACKTR [47], and PPO [22], update
policies using only data collected from the current policy, ensuring stability but potentially limiting
sample efficiency. Off-policy methods such as DQN [48], DDPG [49], TD3 [50], and SAC [51] can
learn from experiences collected by different policies, enabling better sample efficiency but often at
the cost of increased complexity and potential instability. In LLM training, on-policy methods are
more commonly adopted, with approaches like GRPO [17], REINFORCE [52], ReMax [53], and
PPO [22] demonstrating strong performance through various optimization techniques. Meanwhile,
some works explore off-policy learning, such as DPO [54] which reformulates preference optimization
as a classification problem. However, few work have investigated how to effectively combine the
stability benefits of on-policy learning with the capability expansion potential of off-policy data. Our
work bridges this gap by proposing novel techniques to leverage existing high-quality off-policy data
to enhance on-policy learning while maintaining training stability.

7 Conclusion

We presented LUFFY, a simple yet powerful framework that integrates off-policy reasoning guidance
into the zero-RL paradigm. By dynamically balancing imitation and exploration, LUFFY effectively
leverages external reasoning traces without sacrificing the model’s ability to discover novel solutions.
Our method outperforms strong baselines across competitive math benchmarks and generalizes
robustly to out-of-distribution tasks, surpassing both on-policy RL and supervised fine-tuning. These
results highlight the promise of off-policy learning as a scalable and principled path toward building
more general, capable, and self-improving reasoning models. Future work may focus on extending
LUFFY to broader domains or modalities [55] and further refining policy shaping to maximize
exploration under off-policy guidance.
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A Convergence Rate of the Importance-Weighted Policy Gradient Estimator

We study the nonconvex finite-sum problems of the form

max
θ∈Rd

J(θ) :=
1

n

n∑
i=1

Ji(θ), (10)

where both J and Ji (i ∈ [n]) may be nonconvex. We denote the class of such finite-sum Lipschitz
smooth functions by J ∈ Jn. Here, we optimize functions in Jn of our importance-weighted policy
gradient estimator.

The vanilla policy gradient algorithm maximizes the expected advantage function (equivalent to
minimizing the negative expected advantage function) as

max
θ∈Rd

J(θ) = Eτ∼πθ
[A(τ)] ≈ 1

n

n∑
i=1

[A(τi)] , (11)

According to the Policy Gradient Theorem [56], the vanilla policy gradient estimator has the following
form:

∇J(θ) = Eτ∼πθ
[∇ log πθ(τ) ·A(τ)] ≈ 1

n

n∑
i=1

[∇ log πθ(τi) ·A(τi)] , (12)

where we use ∇J(θ) to denote ∇θJ(θ) for simplicity. Our algorithm draws samples from another
behavior policy πϕ, resulting in an importance-weighted policy gradient estimator as

∇̃J(θ) = Eτ∼πϕ

[
πθ(τi)

πϕ(τi)
· ∇ log πθ(τ) ·A(τ)

]
≈ 1

n

n∑
i=1

[wi · ∇Ji(θ)] , (13)

where wi =
πθ(τi)
πϕ(τi)

is the importance weight assigned to sample i.

Let αk denote the learning rate at iteration k, and wik be the instance weight assigned to sample i by
our algorithm. By stochastic gradient ascent, our algorithm has the following update rule:

θk+1 = θk + αkwik∇Jik(θ
k), i ∈ [n]. (14)

Definition 1. For J ∈ Jn, our algorithm takes an index i ∈ [n] and a point x ∈ Rd, and returns the
pair (Ji(θ),∇Ji(θ)).

Definition 2. We say J : Rd → R is Lipschitz smooth (L-smooth) if there is a constant L such that

||∇J(ϑ)−∇J(θ)|| ≤ L||ϑ− θ||, ∀ϑ,θ ∈ Rd. (15)

Definition 3. A point θ is called ϵ-accurate if ||∇J(θ)||2 ≤ ϵ. A stochastic iterative algorithm is
said to achieve ϵ-accuracy in k iterations if E[||∇J(θk)||2 ≤ ϵ, where the expectation is over the
stochasticity of the algorithm.
Definition 4. We say J ∈ Jn has σ-bounded gradients if ||∇Ji(θ)|| ≤ σ for all i ∈ [n] and θ ∈ Rd.

Definition 5. We say the positive instance weight w in our algorithm is bounded if there exist
constants w and w such that w ≤ wi ≤ w for all i ∈ [n].
Theorem 1. Suppose the objective function of the policy gradient algorithm J ∈ Jn, where Jn is the
class of finite-sum Lipschitz smooth functions, has σ-bounded gradients, and the importance weight

w = πθ/πϕ is clipped to be bounded by [w,w]. Let αk = α = c/
√
K where c =

√
2(J(θ∗)−J(θ0))

Lσ2ww ,
and θ∗ is an optimal solution. Then, the iterates of our algorithm in Eq. (3) satisfy:

min
0≤k≤K−1

E[||∇J(θk)||2] ≤

√
2(J(θ∗)− J(θ0))Lw

Kw
σ.

Proof. According to the Lipschitz continuity of ∇J , the iterates of our algorithm satisfy the following
bound:

E[J(θk+1)] ≥ E[J(θk) + ⟨∇J(θk),θk+1 − θk⟩ − L

2
||θk+1 − θk||2]. (16)
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After substituting (14) into (16), we have:

E[J(θk+1)] ≥ E[J(θk)] + αkwkE[||∇J(θk)||2]− Lα2
kw

2
k

2
E[||∇Jik(θ

k)||2]

≥ E[J(θk)] + αkwkE[||∇J(θk)||2]− Lα2
kw

2
k

2
σ2. (17)

The first inequality follows from the unbiasedness of the stochastic gradient Eit [∇Jik(θ
k)] =

∇J(θk). The second inequality uses the assumption on gradient boundedness in Definition 4.
Re-arranging (17) we obtain

E[||∇J(θk)||2] ≤ 1

αkwk
E[J(θk+1)− J(θk)] +

Lαkwk

2
σ2. (18)

Summing (18) from k = 0 to K − 1 and using that αk is fixed α we obtain

min
t

E[||∇J(θk)||2] ≤ 1

K

K−1∑
k=0

E[||∇J(θk)||2]

≤ 1

K

K−1∑
k=0

1

αwk
E[J(θk+1)− f(θk)] +

1

K

K−1∑
k=0

Lαwk

2
σ2

≤ 1

Kαw

(
J(θK)− J(θ0)

)
+

Lαw

2
σ2

≤ 1

Kαw

(
J(θ∗)− J(θ0)

)
+

Lαw

2
σ2

≤ 1√
K

(
1

cw
(J(θ∗)− J(θ0)) +

Lcw

2
σ2

)
. (19)

The first step holds because the minimum is less than the average. The second step is obtained
from (18). The third step follows from the assumption on instance weight boundedness in Definition 5.
The fourth step is obtained from the fact that J(θ∗) ≥ J(θK). The final inequality follows upon
using α = c/

√
K. By setting

c =

√
2(J(θ0)− J(θ∗))

Lσ2ww
(20)

in the above inequality, we get the desired result.

As seen in Theorem 1, our importance-weighted policy gradient estimator has a convergence rate of
O(1/

√
K). Equivalently, the time complexity of our algorithm to obtain an ϵ-accurate solution is

O(1/ϵ2). Note that our choice of step size α requires knowing the total number of iterations K in
advance. A more practical approach is to use a time-decayed step size of αk ∝ 1/

√
k or αk ∝ 1/k.

B Case study

A demonstrative case study (Fig.9) comparing our proposed approach (LUFFY) against baseline
methods (SFT and GPRO) in mathematical problem solving reveals distinct characteristics in rea-
soning patterns. SFT demonstrates redundant and circular reasoning with excessive repetition (over
8,129 tokens), while GPRO shows concise but unfounded deduction (1002 tokens), both leading to
incorrect conclusions. In contrast, LUFFY presents a well-balanced approach (2623 tokens) that
combines systematic decomposition with clear mathematical calculation. Through rigorous reasoning
and proper verification steps, LUFFY successfully reaches the correct answer, demonstrating the
effectiveness of our methodology in achieving both accuracy and efficiency.
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Case Study

Prompt: <system prompt> This is the problem: A diagonal of a regular 2006-gon is called
odd if its endpoints divide the boundary into two parts, each composed of an odd number of
sides. Sides are also regarded as odd diagonals. Suppose the 2006-gon has been dissected
into triangles by 2003 nonintersecting diagonals. Find the maximum possible number of
isosceles triangles with two odd sides.

SFT
Response:
<think>
[Problem Restatement Not
Analysis]
Okay, let’s try to tackle this
problem.
So, we have a regular 2006-
gon, and we need to find the
maximum number of isosce-
les triangles...
[Endless Definition Loop]
Let me break this down step
by step. First, let’s recall
some basics about regular
polygons and their diago-
nals...
Hmm, maybe they mean that
sides are considered as diago-
nals here?...
Hmm, maybe they are us-
ing "diagonal" in a different
sense here...
Alternatively, maybe the
problem is using d̈iagonalẗo
mean any chord...
[Wait-Pattern Paralysis]
Wait, but in the problem state-
ment...
Wait, but sides are chords...
Wait, but in the problem’s
definition, sides are odd diag-
onals...
[Small-Case Trap]
Let’s take a regular polygon
with a small even number of
sides, say 4 (a square). A
triangulation of a square has
2 triangles...
[Complete Breakdown]
but diagon diagon polygon.<
odd diagon in the odd of odd
diagon = think... wait diagon
diagon diagon diagon...
Tokens Length: > 8192
Correctness: False

On-Policy RL
Response:
<think>
Formulaic Decomposition
To solve this problem, we
need to understand ...
[Pseudo-Systematic Struc-
ture]
Let’s step-by-step.
1.Understanding the ... if we
label the vertices of the poly-
gon as (V_1,..., V_2006)...
[Circular Property Descrip-
tion]
Properties of Odd Diago-
nals... Properties of trian-
gulation... Properties of the
polygon...
[False Authority Appeal]
The number of isosceles tri-
angles with two odd sides
in a triangulation of a regu-
lar polygon is a well-known
problem in combinatorial ge-
ometry...
[Unsubstantiated Conclu-
sion]
For a 2006-gon, the maxi-
mum number of such trian-
gles is 501.
</think>
[Final Answer]
The maximum possible num-
ber of isosceles triangles with
two odd sides in a triangula-
tion of a regular 2006-gon is
501 .

Tokens Length: 1002
Correctness: False

LUFFY
Response:
<think>
Clear Problem Definition
To solve this problem, we
need to understand ... and
how it can be ... We are
specifically interested in ...
[Systematic Decomposition
and Analysis]
First, let’s define some terms
and properties...
Step 1: Understanding Odd
Diagonals...
Step 2: Properties of Isosce-
les Triangles in a Regular
Polygon...
Step 3: Counting Odd Diago-
nals...
Step 4: Dissecting the Poly-
gon into Triangles...
[Precise Mathematical Calcu-
lation]
"For each vertex, there are
1002 vertices at an odd dis-
tance...
[Logical Verification]
Given that each isosceles tri-
angle with two odd sides uses
one odd diagonal and one
side...
[Consistency Check]
"Let’s verify the logic:
1. Odd Diagonals ...
2. Dissection ..."
</think>
[Final Answer]
Thus, the maximum possible
number of isosceles triangles
with two odd sides is 1003 .
Tokens Length: 2623
Correctness: True

Answer: "$1003$"

Figure 9: Comparison of three approaches(SFT, On-Policy RL, and LUFFY) for a geometric problem.
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