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Reinforcement Learning

n  Computer Vision
• Input: image pixels 

n  Natural Language Processing
• Input: sentences

n  Reinforcement Learning
• Input: states

n  Supervised Learning
• (input, label)

n  Unsupervised Learning
• (input)

n  Reinforcement Learning
• sequential decision-making
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The Era of RL
n Video games: Human-level control through DRL, Nature 2015 (视频游戏)
n AlphaGo, Nature 2016;   AlphaGo Zero, Nature 2017 (围棋)
n AlphaStar in StarCraft II, Nature 2019 (星际争霸II)
n DRL for legged robots, Science Robotics 2019 (机器人学习)
n Superhuman AI for multiplayer poker, Science 2019 (德州扑克，多人非完全信息博弈)
n Discovering faster matrix multiplication algorithms, Nature 2022 (矩阵相乘算法发现，基础数学)
n Magnetic control of tokamak plasmas, Nature 2022 (可控核聚变控制)
n Outracing champion Gran Turismo drivers, Nature 2022 (赛车模拟控制)
n Safety validation of autonomous vehicles, Nature 2023 (无人驾驶安全验证)
n Faster sorting algorithms discovering, Nature 2023 (排序算法发现，基础信息科学)
n Champion-level drone racing, Nature 2023 (无人机竞速)
n Mastering diverse control tasks through world models, Nature 2025
n ……
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The Dilemma of RL

RL = Artificial General Intelligence (AGI)? 

Yet?
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The Dilemma of RL

Transformers Vision Transformers

Decision Transformers
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Artificial General Intelligence (AGI) 

ChatGPT (Generative Pre-Training)

Next-token prediction

Transformer

Architecture 

Self-supervised learning
Algorithm
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RL in ChatGPT

RL: Fine-tuning in Step 3, playing an auxiliary role
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The Dilemma of RL

n  Computer Vision
• Input: image pixels 

n  Natural Language Processing
• Input: sentences

n  Reinforcement Learning
• Input: states, (states, actions)

Semantics

not aligned
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The Dilemma of RL

Data

From online interactions
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Confidence in RL
Supervised learning

Maybe imitating the intelligence within existing data?
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Confidence in RL

Supervised learning

Maybe imitating the intelligence within existing data?

Reinforcement learning

Can surpass the intelligence within existing data definitely
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Confidence in RL
LLM: From Pre-Training to Post-Training

Pre-training will end

              -- by Ilya Sutskever

                           @NeurIPS 2025
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Confidence in RL

LLM: From Pre-Training to Post-Training

Reasoning, inference
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Multi-Agent RL

A set of autonomous agents that share a common environment

15 / 53



Difficulty in MARL

Ø MARL is fundamentally difficult
• since agents not only interact with the environment but also with each other

Ø If use single-agent Q-learning by considering other agents as a part of the environment
• Such a setting breaks the theoretical convergence guarantees and makes the learning unstable

• i.e., the changes in strategy of one agent would affect the strategies of other agents and vice versa

16 / 53



Types of Multi-agent Systems
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n Cooperative
Ø Maximizing a shared team reward
Ø Coordination problems

n Competitive

n Mixed
Ø Self-interested with different individual rewards (not opposite)
Ø General-sum games

Ø Self-interested: maximizing an individual opposite reward
Ø Zero-sum games
Ø Minimax equilibria



Cooperative Multi-Agent  MDP
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n Assume agents can observe the global state
Ø Agent: 𝑖 ∈ 𝐼 = {1,2, … , 𝑁}
Ø State: s ∈ 𝑆
Ø Action: 𝑎! ∈ 𝐴, joint action 𝑎 =< 𝑎", … , 𝑎# >∈ 𝐴$

Ø Transition function: P s% s, 𝐚
Ø Reward: 𝑟(𝑠, 𝒂)
Ø Agent 𝑖%𝑠 policy 𝜋! 𝑠 : 𝑆 → 𝐴
Ø Objective: finding a joint policy 𝝅 =< 𝜋", … , 𝜋# > to 

maximize expected return: R = ∑&'() 𝛾& 𝑟&
Ø Value funtion: 𝑄* 𝑠, 𝒂 = 𝔼[𝑅|𝑠( = 𝑠, 𝒂𝟎 = 𝒂,𝝅]
Ø With optimal 𝑄∗ 𝑠, 𝒂 , optimal 𝝅∗ 𝒔 = 𝑎𝑟𝑔𝑚𝑎𝑥- 𝑄∗(s, 𝒂)



Decentralized Partially Observable MDP
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Ø Observation: 𝑜! ∈ Ω
Ø Observation function:𝑜! ∈ Ω~𝑂(𝑠, 𝑖)

n Agent can not observe the global states

n Decentralized policy for agent 𝒊 :
Ø 𝜋! 𝜏! : 𝑇 → 𝐴
Ø Action-observation history: 𝜏! ∈ 𝑇 = Ω×𝐴 ∗

n Communication and sensory constraints

Ø Decentralized execution



Challenges of Cooperative MARL
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Ø Curse of dimensionality

n Scalability

n Multi-Agent Credit Assignment
Ø Each agent′s contribution to the team

n Learning Efficiency
Ø Requiring extensive interactions

n Limited Observability
Ø Sensory constraints

n Exploration
Ø An exponential joint policy space



MARL Paradigms
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Factored Value Functions for MARL
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Factored Value Functions for MARL
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Centralized Training and Decentralized Execution

Ø 𝑎𝑟𝑔𝑚𝑎𝑥𝒂 𝑄&/&(𝝉, 𝒂)=(𝑎𝑟𝑔𝑚𝑎𝑥-! 𝑄"(𝜏", 𝑎"), … , 𝑎𝑟𝑔𝑚𝑎𝑥-" 𝑄#(𝜏#, 𝑎#))
Ø Consistent greedy action selection between joint and individuals

n Individual-Global Maximiztion (IGM) Constraint
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Environment
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Ø GRF
Ø MA-Mujoco
Ø MOBA 



Online Learning Performance
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Data-Driven Offline MARL Learning
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MARL with Factored Policies
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Limitation: Shared learning among agents

n Parameter sharing is critical for deep MARL methods

n However, agents tend to acquire homogeneous behaviors

n Dynamic sharing with diversity is essential for practical tasks

Similar behaviors (competing for ball) Each agent has its responsibility to score
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MARL with Representation Learning

n Agents with similar role have similar policies 

and share their learning

Ø Roles  Subtasks  Skills  

Ø An example of subtask assignment in football: 
forward, center, defender, goalkeeper

n Benefits of task decomposition and Role 

(Subtask or Skill) assignment

Ø Agent can change its roles in different situations
Ø Agent learn policy conditioned on their roles

Tackles agent homogenization

Facilitates efficient knowledge transfer
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Challenge of Role Representation Learning

measure 
similarity

ý How to measure the similarity of the agents?

ý How to define role representation?

ý How to achieve the knowledge transfer?

ý How to change the role dynamicly?

… …
change 

dynamicly
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Our method: ACORM

• Zican Hu, Zhi Wang*, et al., Attention-guided contrastive role representations for MARL, ICLR 2024. 

(i) Contrastive Role Representation

Mixing Network

Agent 1 Agent n…𝑄!(𝑒! , 𝑎!
" )

𝑧#"(𝑜#" , 𝑎#"$#)

𝑄%(𝑒% , 𝑎%
")𝑄&'&(𝒆, 𝒂)

GRU

(𝑜%" , 𝑎%"$#)

𝑒%"

MLP

MLP

(a)

𝑧%
"

Contrastive 
Representation

— Concatenation

— Role Representation

— Agent Embedding

𝑄#(𝑒#, 𝑎#")

𝒛𝒕

𝒆𝒕

𝑒%"$# 𝑒%
"

𝑧!"(𝑜!" , 𝑎!"$#)

𝒔𝒕
n Learn agent embedding

Ø Extract complex agent behaviors from 

trajectory as 𝑒!& = 𝑓0(𝑜!&, 𝑎!&1", 𝑒!&1")

Ø Reinforce role representation(𝑧&~𝑓2(𝑧&|𝑒&)) 
through contrastive learning 

n Learn role representation
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i) Contrastive Role Representation

n Calculate contrative loss

𝑄%(𝑒% , 𝑎%")

GRU

(𝑜%
" , 𝑎%

"$#)

𝑒%"

MLP

𝑒#" 𝑒!"…

Clustering

…K Clusters

𝑞 𝑘# 𝑘$

Similarity

Contrastive Loss

MLP

(b)

𝑧%"

EncoderContrastive 
Representation

Momentum Encoder

— Concatenation

— Role Representation

— Agent Embedding

𝒛𝒕

𝒆𝒕

𝑒%"$# 𝑒%"
𝑒!" (𝑖 ∈ 𝐶#) 𝑒!!

" (𝑖$ ∈ 𝐶#) 𝑒!∗
" (𝑖∗ ∉ 𝐶#)

n Negative pairs generation
Ø Cluster the agent embedding
Ø the same cluster set as positive keys 
Ø The different clusters set as negative 

Ø InfoNCE loss is rearranged as 

ℒ! = −log
exp(𝑞"𝑊𝑘#)

exp(𝑞"𝑊𝑘#) + exp(𝑞"𝑊𝑘$)

n Update momentum encoder
𝜃% ← 𝛽𝜃% + (1 − 𝛽)𝜃&
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ii) Attention-Guided Role Coordination

n Attention mechanism to enhance coordination 
Mixing Network

𝒔𝒕

Attention𝒛𝒕

Agent 1 Agent n…𝑄!(𝑒! , 𝑎!
" )

𝑧#"(𝑜#" , 𝑎#"$#)

𝑄&'&(𝒆, 𝒂)

MLP

GRU

𝑊)

Scaled Dot 
Product

Softmax

Dot Product

𝑊* 𝑊+

𝝉,-.
𝒕

𝝉𝒕

𝝉𝒕 𝒛𝒕

/𝒔𝒕

𝑄#(𝑒#, 𝑎#")

𝝉𝒕$𝟏 𝝉𝒕

𝑧!"(𝑜!" , 𝑎!"$#)

Ø Set state embedding as the query, role representation as 
the key and value 

Ø calculate a weighted combination of role representations as: 

𝝉atten =5
'()

*

𝛼'𝑣' =5
'()

*

𝛼' ⋅ 𝑧'𝑊+

Ø The attention weight 𝛼! computes as: 

𝛼' =
exp( 1

𝑑%
⋅ 𝝉𝑊, ⋅ (𝑧'𝑊!)")

∑-()* exp( 1
𝑑%
⋅ 𝝉𝑊, ⋅ (𝑧-𝑊!)")

Ø Obtain the aggregated output as: 𝝉mha = (𝝉atten
) , … , 𝝉atten

. )𝑊/
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Attention-guided COntrastive Role Representations for MARL (ACORM)

• Zican Hu, Zhi Wang*, et al., Attention-guided contrastive role representations for MARL, ICLR 2024. 36 / 53



Performance on SMAC
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Ablation study
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Visualize role representations
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Visualize attention mechanism
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Conclusions

n A general role representation learning framework (分工)

n Leverage role representations to realize more expressive credit assignment (协作)

n Tackle agent homogenization and facilitate efficient knowledge transfer

Paper: https://openreview.net/forum?id=LWmuPfEYhH Code: https://github.com/NJU-RL/ACORM
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Soft Decision Trees

• Hinton et al., Distilling a Neural Network Into a Soft Decision Tree, 2017. 

A soft binary decision tree with a 
single inner node and two leaf nodes

Ø Decision trees have long been valued for their simplicity and interpretability
• mimic human decision-making processes by splitting data into branches at 

binary decision points, making them intuitive to understand and explain

Ø The term “soft” decision trees extends this concept further 
• incorporate elements of neural networks to enhance flexibility and 

performance
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Soft Decision Trees for MARL

𝜃ℎ1𝑃1 + 𝜃ℎ2𝑃2 + 𝜃ℎ3𝑃3 + 𝜃ℎ4𝑃4 = ℎ𝑖
𝑡

𝑝𝑗=𝜎 𝑤𝑜
𝑗𝑜𝑖𝑡 + 𝑤ℎ

𝑗 ℎ𝑖𝑡−1 + 𝑏𝑗

𝑝2𝑗+1=𝜎 𝑜𝑖𝑡, ℎ𝑖
𝑡−1𝑝2𝑗=𝜎 𝑜𝑖𝑡, ℎ𝑖

𝑡−1

𝑝𝑗 1 − 𝑝𝑗

𝑃1 𝑃2 𝑃3 𝑃4

𝑝𝑗𝑝2𝑗 𝑝𝑗(1 − 𝑝2𝑗) (1 − 𝑝𝑗)(1 − 𝑝2𝑗+1)
(1 − 𝑝𝑗)𝑝2𝑗+1

Next Step
𝑖-th Agent
𝑗-th Node

𝑝𝑗𝑝2𝑗 (1 − 𝑝𝑗)𝑝2𝑗+1
𝑝𝑗(1 − 𝑝2𝑗)

𝑤𝑜
𝑗𝑜𝑖𝑡

𝑝𝑗=𝜎 ⋅

𝑝2𝑗 𝑝2𝑗+1

𝑃1 𝑃2 𝑃3 𝑃4

1 − 𝑝𝑗

argmax𝑙 𝑃𝑙(𝑜𝑖𝑡)
(a)

(1 − 𝑝𝑗)(1 − 𝑝2𝑗+1)

(b)

nMotivation

Ø  Soft decision trees for the Q-function 

• Differentiable structure, soft decision boundaries

• Good representation ability

• Good interpretability for decision problems
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Recurrent Soft Decision Trees

n Key insight
• Incorporate history information akin to RNNs
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Ensemble Recurrent Soft Decision Trees

n Key insight
• Increase representation power

• Ensure interpretability

• Linear ensembling
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Mixing Tree Architecture

n Key insight
• Value decomposition using soft decision tress
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MIXing Recurrent soft decision Trees (MIXRTs)

n Put it together

• Zichuan Liu, Zhi Wang*, et al., MIXRTs: Toward Interpretable Multi-Agent RL via Mixing Recurrent Soft Decision Trees, TPAMI, 2025. 48 / 53



Primary Results: Performance

Ø在简单场景上的性能
Ø 快速掌握简单任务

Ø 模型取得较高的胜率

Ø在困难/超困难场景上的性能
Ø 实现具有竞争力的性能

Ø 在学习过程中更加稳定

Ø模型参数比较
Ø 线性模型、参数较少
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Primary Results: Interpretability

Ø 解释软决策树的结构

Ø 更红的颜色意味着获得更高的特征权重

Ø 在绿色方框中，位置17、14和29处有着更红的颜色，表示敌人是否可见、自身的生命值等特征，易

发现智能体更倾向于攻击敌人
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Primary Results: Interpretability

n案例分析
Ø对特征的重要度解释

Ø 特征重要度的定义

Ø 特征重要度在某一回合中：以健康属性为例

Ø 相同的智能体有着相同趋势

Ø 死亡的智能体具有较低的重要度

Ø 医疗船在战斗中具有较高的重要度

Ø …….
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Thank You.

Zhi Wang (王志)
https://heyuanmingong.github.io

Email: zhiwang@nju.edu.cn

Nanjing University, China
2025-04-27
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