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Reinforcement Learning

B Supervised Learning B Computer Vision
« (input, label)  |nput: image pixels

B Unsupervised Learning B Natural Language Processing
* (input) * Input: sentences

B Reinforcement Learning B Reinforcement Learning
« sequential decision-making * Input: states
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The Era of RL

Video games: Human-level control through DRL, Nature 2015 (#3175 k)

AlphaGo, Nature 2016; AlphaGo Zero, Nature 2017 (E )

AlphaStar in StarCraft I, Nature 2019 (Ef+% i1 1)

DRL for legged robots, Science Robotics 2019 (AL A% 3))

Superhuman Al for multiplayer poker, Science 2019 (&M 3%, % AT 415 &1 5
Discovering faster matrix multiplication algorithms, Nature 2022 (4E %48 3 5ok R 3L, A mh45)
Magnetic control of tokamak plasmas, Nature 2022 (7T #=# & & 1= 4)

Outracing champion Gran Turismo drivers, Nature 2022 (5% % 42 4 4= 1)

Safety validation of autonomous vehicles, Nature 2023 (7 A 2 3 4 4 1)

Faster sorting algorithms discovering, Nature 2023 (Hk /5 5 ik &R 3L, # #:13 8:4L%)
Champion-level drone racing, Nature 2023 (. A#LZ %)

Mastering diverse control tasks through world models, Nature 2025
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The Dilemma of RL

RL = Artificial General Intelligence (AGI)?
Yet?
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The Dilemma of RL

Transformers

Attention is all you need

Vision Transformers

ipoF] An image is worth 16x16 words: Transformers for image recognition at

A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc scale

... to attend to all positions in the decoder up to and including that position. We need to prevent

A Dosovitskiy, L Beyer, A Kolesnikov... - arXiv preprint arXiv ..., 2020 - arxiv.org

... We implement this inside of scaled dot-product attention by masking out (setting to —<) ... ... directly to images, with the fewest possible modifications. To do so, we split an image into

Y% Save Y9 Cite [Cited by 176805] Related articles All 73 versions 9

patches ... only to small-resolution images, while we handle medium-resolution images as well. ...
Y% Save P9 Cite |Cited by 60296 | Related articles All 21 versions 99

Decision Transformers

Decision transformer: Reinforcement learning via sequence modeling
L Chen, K Lu, A Rajeswaran, K Lee... - Advances in neural ..., 2021 - proceedings.neurips.cc

... of the Transformer architecture, and associated advances in language modeling such as GPT-x
and BERT. In particular, we present Decision Transformer, ... , Decision Transformer simply ...

Y% Save Y9 Cite

Cited by 1942

Related articles All 13 versions 99
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Artificial General Intelligence (AGI)

ChatGPT (Generative Pre-Training)

Next-token prediction

Enter text:

The dog eats the apples.

Self-supervised learning
Algorithm

Transformer
Architecture

464 3290 25365 262 22514 13
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RL in ChatGPT

Step 1

Collect demonstration data
and train a supervised policy.

A promptis >
./
sampled from our

Explain reinforcement

prompt dataset. learning to a 6 year old.

}

A labeler @
demonstrates the

desired output V4
behavior. We give treats and

SFT
This datais used to ,/}?j\.\.
fine-tune GPT-35 Y
with supervised V4
learning. EEE

RL: Fine-tuning in Step 3, playing an auxiliary role

punishments to teach...

Step 2

Collect comparison data and
train a reward model.

A prompt and r 3
LS
several model Explain reinforcement
outputs are learning to a 6 year old.
sampled.
In I':;fr‘:“i":‘;(’::“‘ Explain rewards...
agentis...

Inmachine We give treats and
learning... punishmentsto
teach...

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM

This data is used ./}?.A.

to train our W

reward model.

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is S
sampled from Write a story
the dataset. about otters.
y
The PPO model is .o
initialized from the .//?.5\\.
supervised policy. W

The policy generates
an output.

The reward model o
calculates a reward N
for the output. Y
The reward is used *

to update the rk

policy using PPO.
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The Dilemma of RL

B Computer Vision

* Input: image pixels

m Natural Language Processing Semantics

° I i
nput: sentences not aligned

B Reinforcement Learning

* Input: states, (states, actions)
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The Dilemma of RL

decisions (actions)

Data

From online interactions

conseguences
observations
rewards
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Confidence in RL

Supervised learning

Maybe imitating the intelligence within existing data?

So I challenge the claim that next token prediction
can not surpass human performance.

11/48



Confidence in RL

Supervised learning

Maybe imitating the intelligence within existing data?

Reinforcement learning

Can surpass the intelligence within existing data definitely
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Confidence in RL

LLM: From Pre-Training to Post-Training

Pre-training will end

== by llya Sutskever
@NeurlPS 2025

Pre-training as we know it will end

Compute is growing:

- Better hardware
- Better algorithms
- Larger clusters

Data is not growing:

- We have but one internet
- The fossil fuel of Al
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Confidence in RL

LLM: From Pre-Training fo Post-Training =~ What comes next?

Reasoning. inference e “Agents’??
e “Synthetic data”

e |Inference time compute ~ O1

* Supervised Fine-Tuning + Self-Refine for Reasoning
+ Reinforcement Fine-Tuning » Reinforcement Learning for Reasoning

Fine-Tuning Alignment Reasoning Efficiency
l l
« Reinforcement Learning with Human Feedback *  Model Compression
« Direct Preference Optimization * Parameter-Efficient Fine-Tuning
* Group Relative Policy Optimization * Knowledge Distillation

14 /48



Reinforcement Fine-Tuning

Get Human < Behavior
Preferences CIoning Explore
~ / : SFT
Generate preferred responses '
Rewards (preferences) { & LLM Agent ] [a Environment ]
. A4 " . Optimize Collect
Reward Model/ _ Tl'ajeCtOI'y Failures
Preference Data/ Rewards (preferences) ——>| Flne-t.une LLM (via DPO loss)
Reward Function with RL
) ’ ) [Success Traj. | Failure Traj.J

15748



Reinforcement Fine-Tuning

Supervised fine-tuning

| B | B B
& won 2P| e é (xey)  doch

7 7 7
SFT Epochs SFT Epochs SFT Epochs

/Varm-up Reinforced fine-tuning
s
H On-Polic = Final
@ —> 4 ® > @ ® Policy
question

Sampling

(X9 e’, Y’) Golden —_—
Reward “ @

Reinforcement learning J
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LLM Agents

> AL Agents

* (apable of reasoning, decision-making, and communication

» LLM Agents

* Exploit LLMs as agents for tackling interactive decision-making tasks
* Prompt-based methods
* Supervised fine-tuning methods

* Reinforcement fine-tuning methods

* Wooldridge and Jennings, Intelligent agents: Theory and practice. The Knowledge Engineering Review, 1995. 18 /48



Prompt-based Methods

> ReAct, Reflexion

* recursively augment the prompt to a frozen LLM with verbal feedback

* prone to exceed the input length limit of in-context learning, especially for long-horizon tasks

(

e L (1) Hotspot QA }

(

.

designed to interact with?

Question: Aside from the Apple Remote, what other device
can control the program Apple Remote was originally

(_[ (1a) Standard } N

Answer: iPod X
>

-

({ (1b) CoT (Reason Only) }\

Thought: Let's think step
by step. Apple Remote was
originally designed to
interact with Apple TV.
Apple TV can be controlled
by iPhone, iPad, and iPod
Touch. So the answer is

iPhone, iPad, and iPod
Touch.

[ (1c) Act-Only ]—\

Act 1: Search[Apple Remote]
Obs 1: The Apple Remote is a
remote control ..

Act 2: Search[Front Row]
Obs 2: Could not find [Front
Row]. Similar: ..

Act 3: Search[Front Row
(software) ]

Obs 3: Front Row is a
discontinued media center

Ve L (1d) ReAct (Reason + Act) }

Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.

Act 1: Search[Apple Remote]

Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple ..
Front Row media center program ..

Row next and find what other device can control it.

Act 2: Search[Front Row]

Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports',' Front Row
(software) ', ..]

Row (software)
Act 3: Search[Front Row (software) ]

Thought 4: Front Row (software) is controlled by an Apple

originally designed to control the

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search Front

Thought 3: Front Row is not found. I need to search Front

Obs 3: Front Row is a discontinued media center software ..

software .. Remote or the keyboard function keys. So the answer is
keyboard function keys.
Answer: iPhone, iPad, iPod Act 4: Finish(J&8) )( Act 4: Finish[keyboard function keys ] \//
\_Touch VAN J

* Yao et al,, ReAct: Synergizing reasoning and acting in language models, ICLR 2023.
* Shinn et al., Reflexion: language agents with verbal reinforcement learning, NeurlIPS 2023.
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Supervised Fine-tuning s /

» AgentTuning, SwiftSage
* unlock the potential of LLMs for downstream applications
 performance is highly dependent on expensive expert demonstrations

* can be limited due to deficient exploration of target environments

Held-in Tasks T o e T ® More Agent Tasks
[ Trajectory 1 :
\\a L= | A u 3 u =\
T Toupe: L orould | S\
=== = R tab}es, then .. I T o
Operating Database I Action: SHOW TABLES; l Dlgltal
System I i Action: INSERT INTO .. | Card Game
nstruction | ,

Task ! Gonoralion  Hewazd: 0.0 % | Daily Computer
@3 Derivation: o | i\\&% Tasks
— Trajectory 2 =

Web Knowledge I (Database) rajectony : Wiki QA
Navigation Graph : Grade students gﬁie;?io“’ | &

Self- over 60 as Action: UBDATE | E
L0 | PASS in th students rade = G .
) Instruct ; table?“ e e e ) AgentLM k_Xf:_)_. Science
a = ' 60; [ :

Web T |\ e axdl: 10 v , | tWet;_ Experiments

Shopping Holdng ~  ~~~ "~~~ """ TTTT7~ - - nteraction
Agentinstruct AgentTuning

Zeng et al., AgentTuning: Enabling Generalized Agent Abilities for LLMs, Findings of ACL 2024.
Lin et al., SwiftSage: a generative agent with fast and slow thinking for complex interactive tasks, NeurlPS 2023.
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Reinforcement Fine-tuning

» Intelligent agents must excel at imitating demonstrations

and adapting behaviors through trial-and-error
» Steer LLMs toward user-specified tasks, using offline Q-learning, PPO, DPO, etc.
* OpenAl 03, DeepSeek-R1

ai ag

- Tralﬂed with Online
Reinforcement Iearr?l“hg‘

=

[ Action Head J[ Value Head ] (Action Head ][ Value Head ]

A

MLP (NN ] MLP

Large Language Model
t ¢ 4 4

Embed Embed [ MLP J { MLP )
t t f f
Tokenize: Il (XN I Vision Encoder Vision Encoder

Task Instruction: “Move all the fruit to the fridge”

e Egocentric Visual
Observations
[:] Trained from scratch with RL

Szot et al., Large language models as generalizable policies for embodied tasks, ICLR 2024. 21/48



Reinforcement Fine-tuning

» Intelligent agents must excel at imitating demonstrations

and adapting behaviors through trial-and-error
» Steer LLMs toward user-specified tasks, using offline Q-learning, PPO, DPO, etc.

* OpenAlod, DeepSeck-R1

\ ol ua 5
"‘. D Learning from Contrastive
N 4 Failure-Success Trajectories
SHEI T — t ___________ ~
( i 2} (Task: put two cellphones in desk )
Expert Trajectory

Task: put two

( N[ N
cellphones in desk Agent: go to table 1 Agent: go to shelf 1

. Obs 1: on table 1, Obs 1: on shelf 1,
ggben1t: g0 t?\ Slrf"ilf | you see nothing you see cellphone 1
seesce.llgﬂosnee1 g¥es Agent: go to table 2 | | Agent: take cellphone

«+« (after m turns) .+« (after nturns)

Agent: take cellphone 1
« « « (after n turns)

Agent: put cellphone

2 in desk

\Reward: 1.0 LA ) Collect Failures S e i e e

Agent: | cannot find | |Agent: put
the second cellphone | |cellphone 2 in desk

Reward: 0.5 6 Reward: 1.0 0

 Song et al., Trial and error: Exploration-based trajectory optimization for LLM agents, ACL 2024. 22 /48



Reinforcement Fine-tuning

» Challenges
* RL intrinsically requires tedious and vast environment interactions, leading to brittle performance
and poor sample efficiency
* Build LLM agents with open-ended textual commands: tackle huge action spaces, execute long-
horizon planning, and learn from sparse-reward feedback
* Demand a broad spectrum of vital capabilities: long-term credit assignment, understanding the real

physical world, and sophisticated exploration with structured reasoning

23 /48



Our Solution: Hierarchical RL

» The divide-and-conquer principle

. Co - high planer
* how corporations divide into specialized departments 9" P = Hier m w/o Hier

68.34
, , , , Task: boiling water l 53 5
* how biological systems organize cells to form tissues =

and organs go to kitchen 1OW executor .
-| |- 1. open kitchen door
« showcase remarkable efficiency for solving intricate 2. go to kitchen
| (&) @ in kitchen
tasks in a more human-like manner :
prepare tools 1. pick up pot
2. take thermometer
é —> | (&) : prepare done
fl||lng water 1. move pot to sink
Q 2. activate sink
g AR | (&) : sink is broken
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Our method: GLIDER

Grounding Language Models as
EffIcient Decision-Making Agents
via Offline HiErarchical RL

* Decomposes complicated problems into a series of
coherent chain-of-thought reasoning sub-tasks
* Flexible temporal abstraction, enhance exploration

* Divide and conquer, a human-like manner

high planer = Hier m w/o Hier

68.34
- iTask boiling water I ‘ %
\

go to kitchen low executor

1. open kitchen door
2. go to kitchen
| — @) . in kitchen
prepare tools 1. pick up pot
2 take thermometer
[] —>  prepare done
f'"'ng water 1. move pot to sink 1

2. activate sink
.h- r @»ﬁ  sink is broken

) (=

25/48



Hierarchical Structure

. » High-level dataset
/ taf"’ Hierachy S‘rr'uc’rur'e\ g

S hy----- o ek - D' = Sx [d; (00, G0, Srore—t, 00) , ..
St~ - - - - I e & i s . : N [ @5 (00,90, 27T0:c—15,0¢) 5 -+
t .@: gt E E (0t, G, Xt 1e—1,0t4¢) 5 - ]
St"ﬂ'l St+c—-1 - :
d?T_J"' Attc—1 IQ=2ﬁﬁc_1r > Low-level dataset
D' = YN[ g5 (08, a8, 7, 0041) 5oy

(0t+c—1)at+c—17ft+c—1a0t+c)]
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Parameter-efficient hierarchical model

> Actor-critic: share the oo select gate //%lvgl Actor-Critic )

—-o> concatanate
gt Q¢

same frozen LLM backbone
* Actor —add LoRA layers Q‘} high pmmpffé"\o_

. i =¥ low prompt fo
* Critic - add MLP layers _ v

Hierarchy Contro

value head

» High- and low-level policies share the same actor-critic models
* differ in a hierarchy prompt that specifies the level of current inputs

* harness the powerful capability of LLMs to perform in-context learning

27148



Generally Applicable Hierarchy

» High-level planner - sub-task goals - low level policy

High-level planner is guided by environment-
provided rewards
Low-level policy is instructed by the sub-task

completion signal

» Completion derived from

environment observations

Eliminate the necessity for any manual or task-
specific design

Make it broadly applicable

/~ task Hierachy Structure

-+ Stre—1—~{ "
Attec—1 1 R;= Zi-l-C—lr

Environment

el =

@ 7§t Ti+c J

28 /48



Training Pipeline

» Base agent construction using SFT

ESFT(Q) =8 ]E(d70;g)NDh [log Wg(g|d, O)] + A-ny
— ]E(g,o;a)N’Dl [lOg 7Tl@(a|g> 0)] + A ng,

v" a length regularization term KS : —\
* encourage the LLM policy to generate concise %!? o B
—— A
task plans and atomic actions S —>° 3!
Sx(G,A) € *-
o for effective interaction with the environment \( c) SET ORL 020 /
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Training Pipeline

> Offline Hierarchical RL

v Token-level actor

‘Cﬂ'(e) — _E(s,u)wDT

— _]E(s,u)ND,.

:exp <§A(s, u)) s ol | s)]

x5 (Qolo0) = Vo))

-Zlogﬂg(wi | s,wlzi_l)] .

1=1

T ‘? ?« R

S x(G,A)
\(c) SFT ORL

v’ Sentence-level critic

Lo(o) ZE(S,U,T,SI)NDT[(QMS, u) —r — VVZE('S/))Q}

LV(¢) — ESNDT[EUNWQ(‘|S) [L; (Vl/J(S) _Q

3(s,w))]]
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Training Pipeline

» Offline-to-Online Adaptation

v Fix low-level skills

« pre-trained using intrinsic reward functions, not task-specific ones

 high generalization capacity across tasks

« good robustness to distribution shift

v" Finetune high-level policy
« quickly adapt to new tasks with improved

exploration efficiency

’ )
?‘—R '- &

Sx (G A Let® s

— i 020

31/48



GLIDER: Overall Architecture

B sclect gate O Actor-Critic )
-0 Cconcatanate gt a
value head f

2» high prompt

(% Tow prompt |

_______________________

h d
Hler'ar'c yCon‘rr'ol @
S & - S x (G, A)

\(¢c) SFT ORL
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Primary Results

Backbone | Method | ScienceWorld | AlfWorld
| | Seen Unseen | Seen Unseen
@ ReAct 20.72 17.65 7.86 5.22
Q@ Reflexion 21.07 18.11 11.56 6.00
Mistral 7B @ SwitchSage 48.40 45.25 30.29 26.52
1stral- © NAT 57.12 50.79 64.43 63.96
© ETO 58.17 51.85 66.84 71.43
| © GLIDER | 67.31(1 15.71%)  65.14 (1 25.63%) | 70.02 (1 4.76%) 74.83 (1 4.76%)
@ ReAct 3.58 3.51 6.43 2.24
O Reflexion 4.94 3.93 7.14 2.99
G o5 | @ SwitchSage 33.43 30.90 8.23 5.72
cmma- © NAT 47.63 4498 67.86 65.88
© ETO 50.44 47 .84 66.43 68.66
| © GLIDER | 63.67 (126.23%)  58.50 (1 22.28%) | 72.12(16.28%)  70.88 (1 3.23%)
Q@ ReAct 24.76 22.66 2.86 3.73
Q@ Reflexion 27.23 2541 4.29 4.48
11 3-SB @ SwitchSage 42.22 40.58 20.39 10.78
ama-5- © NAT 55.24 48.76 60.71 59.70
© ETO 57.90 52.33 64.29 64.18
| © GLIDER | 77.43 (133.73%)  68.34 (1 30.59%) | 71.56 (+ 11.31%)  75.38 (1 17.45%)
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Ablations

[ w/ Hier (SFT) w/ Hier (ORL) [ w/ Hier (SFT+ORL)
@4 w/o Hier (SFT) w/o Hier (ORL) 7. w/o Hier (SFT+ORL)

%
(=}
1

Performance
=Y
o

N
(=}
]

NN
T

[
o
1

(=}
|

Mistral-7B Gemma-7B Llama-3-8B

v" the hierarchical structure plays a crucial part in all training stages

v' training offline RL agents from scratch performs better than training SFT agents
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Offline-to-Online Adaptation

= GLIDER(Ours) — AWAC — AC
test-conductivity find-animal boil
1.0+ 1.0+ 1.0
808- 0.8 0.8
§0.6- 0.6 - 0.6
+20.4- 0.4+ 0.4
o
0.2 M 0.2- 0.2-
0.0+ 0.0 0.0+
1 | 1 | | 1 . | 1 | | | | 1 | 1 1 | |
0.00.20406081.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.2 0406 0.81.0
Steps  1€4 Steps ~ 1€4 Steps  1e4

v" a higher initial test score, superior zero-shot generalization capacity

v' faster adaptation, better final performance

35/48



In Summary

v An innovative hierarchical model architecture

« superior parameter efficiency and broad applicability

 efficiently grounding LLM agents to tackle complex, long-horizon tasks

v" Future directions
« extend beyond strict agent tasks: many LLM tasks can also be reformulated as the
sequential decision-making paradigm through process reward model (PRM)

« Extend to broader domains, e.g., mathematical reasoning, code generation

36 /48
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Large Reasoning Models

v OpenAl-o01, DeepSeek-R1, Kimi-1.5

« Extensive CoT responses, sophisticated behaviors (self-reflection, self-correction)

« Through RL with purely rule-based rewards

v Zero-RL

« Reinforcement fine-tuning to the base model, without SFT

 Elicit reasoning potentials using models’ own rollouts

38/48



Zero-RL

v On-policy
 Ahuge language space, hard exploration

« amplifie existing behaviors rather than introducing genuinely novel cognitive capacities

How can we empower LLMs to acquire reasoning

behaviors surpassing their initial cognitive boundaries

39/48



Off-policy guidance

v On-policy rollouts + off-policy knowledge
« vs. pure imitation: the generalization limits, which locks models into superficial and rigid

reasoning models that impede further learning

. 3
Solution Advantage Probability
_______________________
! Ay T
. : . )
M ' M)
Y T 1 A2 7’{'2 !
2 — : I
Verifier & -
Group Compute : & :

Off-policy
Model

Policy Shaping ‘T

40 /48



Our Method: LUFFY

Learning to Reason Under OFF-policY Guidance

* Dbalance imitation and exploration by combining off-policy demonstrations with on-policy rollouts

Nogt 751

1 o A A
Imixed(0) = E(Z Z min[7; +(0, ) Aj, clip(7;,+(6,¢); 1 —€,1 4+ €)Aj]
j=1t=1
off—polic}robjective
Non |T’L| . R
+Y ) min[r;(0)A;, clip(ri (0); 1 — €, 1+ €) Aj]),
i=1 t=1

on-policy objective

o (Tj,th’ TJ7<t)
7T¢(T]7t|q7 TJ7<t)

7T9(7'i,t|Q7 Ti,<t)

here 7, :(0, ¢) = .
w Tj,t( a¢) weold(n,th,n,q)

and Tit (0) =

Mixed Policy GRPO

Project Page: https://github.com/ElliottYan/LUFFY 41/48



Our Method: LUFFY

v Mixed Policy GRPO

* Importance sampling

« Convergence rate 0(1/vVK)

Theorem 1. Suppose the objective function of the policy gradient algorithm J € T, where [J,, is the
class of finite-sum Lipschitz smooth functions, has o-bounded gradients, and the importance weight

w = g /Ty is clipped to be bounded by [w,w). Let o, = o = ¢/vV K where ¢ = \/Q(J(ZZZUJ@(BO)),
and 0* is an optimal solution. Then, the iterates of our algorithm in Eq. (3) satisfy:

, , 2(J(6%) — J(6°)) L
i E[[VI(6°)%) < \/ - 0.

* Project Page: https://github.com/ElliottYan/LUFFY 42 /48



Our Method: LUFFY

v Policy shaping via regularized importance sampling

» re-weights the gradient of off-policy distributions

« enhance learning from low-probability tokens

= X
7[8 ~
Vo TsuapinG-orr(0) = Eror, Vef(ﬂ_i) ‘ Aj:| f(X) = x+ A
_ FZERR VS
=B _f (%)%Vm Aa]
/7 A
A 2 J
=E o, | (m6) :—ng log g - A . (9 +7)
importanc:e, sampling  _

Project Page: https://github.com/ElliottYan/LUFFY 43 /48



Our Method: LUFFY

v Policy shaping via regularized importance sampling

» re-weights the gradient of off-policy distributions

« enhance learning from low-probability tokens

Entropy during Training Loss Weighting Gradient Weighting
0.6 : ]
= On-policy
0.5 —— Mixed-policy
—— Mixed-policy + Shaping
0.4 L L
>
9
‘E 0.3
=
0.2
0.11 Entropy Collapse On-policy/Mixed-policy
0.0 1 0.0- —— Mixed-policy + Shaplng 0.00-
0 100 200 300 400 500 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Probability Probability

Steps

* Project Page: https://github.com/ElliottYan/LUFFY 44 | 48



LUFFY: Primary Results

LUFFY: Learning to Reason under Off-Policy Guidance

88.4
Qwen2.5-Math-7B 84.6
SimpleRL-Zero-7B

OpenReasoner-Zero-7B

79.479.

80

Prime-Zero-7B 66.1
Oat-Zero-7B 61.
LUFFY-Zero-7B 554 559 s

100000

49.6

42.242. 41.747.342-

'y
(=]
w
|2
»N
w
3
w

Accuracy (%)

31.7

26.3 25.7]
23.2

20.7]
15.014.7 14.8
11. 10.
6.7
4.2

AIME 2024 AIME 2025 AMC MATH-500 Minerva Math OlympiadBench Average

20 h7.217.9

-
»

Figure 2: Overall performance across six competition-level benchmarks (AIME 2024, AIME 2025,
AMC, MATH-500, Minerva Math, and OlympiadBench). LUFFY achieves an average score of 49.6,
delivering a substantial performance gain of over +7.0 points on average compared to existing zero
reinforcement learning methods.

* Project Page: https://github.com/ElliottYan/LUFFY 45/ 48
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Conclusions

» Reinforcement Learning

* Bottlenecks: semantics of input space, online interactions

* Reinforcement fine-tuning, post-training

> Efficient LLM agents via Offline Hierarchical RL

* Divide-and-conquer, a human-like manner

* Parameter-efficient and generally applicable hierarchy, offline-to-online adaptation

» Learning to reason under off-policy guidance

* On-policy rollouts + off-policy guidance, a pure RL framework
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Thank You.

Zhi Wang (£ &

https://heyuanmingong.github.io
Email: zhiwang@nju.edu.cn

Nanjing University, China
2025-05-12
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