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Appendix A: Supplementary experimental results from the final path in Env 1,
2 and 3.

This appendix shows the full final planned paths of A*, ACO and RuRL methods, which are listed in Figs. S1(a)-
(c).

As shown in Fig. S1(a), A*, ACO and RuRL methods can find the optimal path with 23 steps in Env 1. When
executing the optimal path, A* and ACO algorithms need to switch directions for 11 and 13 times, respectively,
while RuRL only requires 3 times. Frequently switching directions will slow down the speed of mobile robots
with more consumed energy and may be critical of the performance of the robot motion kinematics [46].

From Fig. S1(b), we find that A*, ACO and RuRL can obtain the optimal path with 23 steps. Furthermore,
the planned path of A*, ACO and RuRL methods need to switch directions for 11, 9 and 9 times, respectively.

In the multi-room environment, the A* and ACO approaches obtain sub-optimal paths with 73 and 74
steps and need to switch directions for 29 and 27 times, respectively, as shown in Fig. S1-(c). In contrast,
RuRL requires only 14 times of switching directions while learning the optimal path with 72 steps, where
RuRL is implemented by the Q-learning algorithm with ε-greedy exploration strategy. Compared with A* and
ACO classic algorithms, we can find that RuRL is capable of finding smoother paths with a better optimality
guarantee.

Appendix B: Supplementary experimental results with different optimization
step K.

This appendix shows the improved learning performance with the optimization step K increasing.
From Table SI, as the optimization step K increases, the learning performance is improved slightly. On the

other hand, a larger optimization step will lead to large computational cost. Generally, a moderate optimization
step (e.g., K = 2) is enough for an appropriate trade-off between the performance improvement and compu-
tational cost. As shown in Fig. S2, when the Pledge rule is withdrawn, the exploratory strategy requires more
exploration steps to ensure optimal path and the number of learning steps will increase suddenly, while the
steps of RuRL are still much smaller than those of the other methods. It indicates that the rule can effectively
guide the early exploration strategy in the reduced space.

Table. S I: Numerical results in terms of total learning steps of all tested algorithms in multi-room tasks.

Implementation algorithm
Env 3

RL without Rules
(×107)

RuRL (K = 1)
(×106)

RuRL (K = 2)
(×106)

RuRL (K = 3)
(×106)

Maximal reduction
(%)

Q-learning (ε-greedy) 1.69 5.18 4.96 4.77 71.79%
Q-learning (Softmax) 2.36 7.86 7.29 7.08 69.93%
SARSA (ε-greedy) 1.23 5.12 4.85 4.72 61.69%
SARSA (Softmax) 2.78 8.45 7.89 7.58 72.78%
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ACOA* RuRL Shared

(a) Env 1: final planned paths

ACOA* RuRL Shared

(b) Env 2: final planned paths

ACOA* RuRL Shared

(c) Env 3: final planned paths

Fig. S 1: The paths planned by A*, ACO and RuRL are denoted with blue stars, purple circles and yellow
vertical bars, respectively. The grids marked by the dark blue horizontal bars represent the shared part of their
paths.
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(a) Q-learning with ε-greedy
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(b) SARSA with Softmax

Fig. S 2: The average steps per episode of RL and RuRL with K = 1, 2, 3 in multi-room navigation tasks.

Appendix C: Supplementary experimental results with different numbers of
episodes N with the Pledge rule.

This appendix shows the full results of the performance of RuRL with different numbers of episodes N with
the Pledge rule, which are listed in Fig. S3 and Table SII, respectively.

In addition, we analyze the relationship between the number of episodes N with the Pledge rule and the
performance of RuRL. We set different values of N with optimization step K = 3 for tasks in the single-room
environment with obstacles and the multi-room environment, respectively. The learning curves and correspond-
ing numerical results are presented in Fig. S3 and Table SII, respectively. It can be observed that the learning
steps decrease as the Pledge rule guides the early exploration strategy for more episodes. A potential drawback
is that a too large N might lead to sub-optimal policies. Generally, using the Pledge rule for an appropriate
number of episodes can accelerate the navigation process at the beginning of the learning process, without
influencing the final optimal policies.
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(a) Env 2 with different N
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(b) Env 3 with different N

Fig. S 3: The performance of RuRL using different N episodes with the Pledge rule.

Table. S II: Numerical results in terms of total learning steps of RL and RuRL, which are implemented by
Q-learning with different N episodes using the Pledge rule under the ε-greedy exploration strategy in Env 2 and
Env 3.

Algorithm Name
Env 2 Env 3

RL without
Rules

(×106)

RuRL
N = 100
(×106)

RuRL
N = 150
(×105)

RuRL
N = 200
(×105)

Maximal Reduction
(%)

RL without
Rules

(×107)

RuRL
N = 100
(×106)

RuRL
N = 300
(×106)

RuRL
N = 500
(×106)

Maximal Reduction
(%)

Q-learning(ε-greedy) 1.91 1.10 7.14 5.38 71.78% 1.69 5.48 5.13 4.77 71.79%
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