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Yuanyang Zhu , Student Member, IEEE, Zhi Wang , Member, IEEE,
Chunlin Chen , Senior Member, IEEE, and Daoyi Dong , Senior Member, IEEE

Abstract—For real-world deployments, it is critical to
allow robots to navigate in complex environments au-
tonomously. Traditional methods usually maintain an in-
ternal map of the environment, and then design several
simple rules, in conjunction with a localization and plan-
ning approach, to navigate through the internal map. These
approaches often involve a variety of assumptions and
prior knowledge. In contrast, recent reinforcement learn-
ing (RL) methods can provide a model-free, self-learning
mechanism as the robot interacts with an initially unknown
environment, but are expensive to deploy in real-world sce-
narios due to inefficient exploration. In this article, we focus
on efficient navigation with the RL technique and com-
bine the advantages of these two kinds of methods into
a rule-based RL (RuRL) algorithm for reducing the sample
complexity and cost of time. First, we use the rule of wall-
following to generate a closed-loop trajectory. Second, we
employ a reduction rule to shrink the trajectory, which in
turn effectively reduces the redundant exploration space.
Besides, we give the detailed theoretical guarantee that the
optimal navigation path is still in the reduced space. Third,
in the reduced space, we utilize the Pledge rule to guide
the exploration strategy for accelerating the RL process
at the early stage. Experiments conducted on real robot
navigation problems in hex-grid environments demonstrate
that RuRL can achieve improved navigation performance.
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I. INTRODUCTION

AUTONOMOUS mobile robots are becoming ubiquitous
in academia, industrial applications, and our daily life [1],

[2]. As one of the fundamental topics in the research of mobile
robots, robot navigation can be seen as a sequence of transla-
tions and rotations for finding the destination, while avoiding
obstacles in the environment [3]. Enabling mobile robots to
perceive and navigate through the surroundings is essential for
their successful deployment in real-world scenarios [4].

Many algorithms have been proposed for path planning and
optimization in robot navigation [5]. Traditional methods usu-
ally maintain an internal map of the environment and design
simple rules to navigate through the internal map. Fuzzy logic
methods use fuzzy rules like IF-THEN to make robot navigation
decisions [6]. Neuro-fuzzy techniques combine neural networks
with fuzzy rules to improve the tracking performance under
uncertain physical interaction and external dynamics [7], [8].
However, it is challenging for human experts to choose the most
appropriate rules and membership functions [9]. Another line
is to use robotic navigation technologies inspired by biological
behavior rules, such as genetic algorithms [10], particle swarm
optimization [11], and ant colony optimization (ACO) [12].
Owing to the fact that these rules need to know the prior
environment model and consider extensive possible situations in
advance for mimicking the cognitive process of human experts
to solve decision-making problems, rule-based methods tend to
converge early to suboptimal policies [13]. Hence, the real-time
performance in these methods may not be sufficient to meet the
requirements of planning speed and accuracy in path planning
tasks [14].

Recent reinforcement learning (RL) methods offer consider-
able potentials for mobile robot systems [15]. RL techniques
are obliged to the idea of Markov decision processes (MDPs)
that aim to directly solve the optimal sequential decision-making
problem of learning from interaction to achieve the goal [16]. By
observing the results of navigation decisions in the real world,
mobile robots can directly learn from trial-and-error experience,
continuously improving their proficiency and adapting to un-
known environments [2]. In recent years, RL has been widely
investigated in robot navigation domains due to its self-learning
and online learning capabilities [17]. However, interacting with
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the real world can be expensive due to practical constraints such
as power usage and human supervision [18]. Model-free RL
systems are capable of solving complex MDPs in a variety of
complex domains, but usually at the cost of a large amount
of agent-environment experience due to their limited sample
efficiency [2].

Rule-based machine learning (RBML) that combines rules
with learning-based methods is a promising direction for utiliz-
ing the experts’ knowledge to improve the learning performance.
RBML usually covers any machine learning method that iden-
tifies, learns, or evolves “rules” to store, manipulate or apply by
the learning system [19]. RBML has been widely studied in a
variety of fields, such as learning classifier systems, association
rule mining, and artificial immune systems, which successfully
combines the efficiency of rules and the autonomy of machine
learning to complete complex tasks in the real world [20]. In
the RL community, some researchers employ rules to improve
the learning performance in dynamic simulation systems [21]
and robot manipulators’ navigation tasks [22]. Nevertheless, few
practical implementations of rule-based RL (RuRL) methods
have been systematically investigated for robot navigation.

On one hand, traditional rule-based methods generally rely
on the environment model and expert knowledge to solve robot
navigation tasks, and tend to converge early to suboptimal
policies. On the other hand, recent RL methods can learn the
global optimal policies in a model-free way as the robot interacts
with an initially unknown environment, but are expensive to
deploy in the real world due to inefficient exploration [15], [23].
In this article, considering the abilities of the rule-based tech-
niques for logic reasoning and RL methods for solving complex
MDPs, we combine the advantages of these two methods into
RuRL methods for efficient robot navigation tasks in hex-grid
environments.1

In summary, our main contributions are threefold as follows:
1) We design the rule of wall-following to obtain a closed-

loop trajectory from the starting point to the goal. We
maintain the main angle of view tracking and the priority
of action selection strategy to ensure that the mobile robot
walks along the left and the right walls, respectively.

2) We use the reduction rule to shrink the trajectory, which
effectively reduces the exploration space. We traverse
the obtained trajectory to determine whether there is a
shorter path between two given states than the path on the
trajectory. Besides, we provide the theoretical guarantee
that the optimal path is still in the reduced space.

3) We employ the Pledge rule to guide the mobile robot
to explore more efficiently at the early learning stage.
Experimental results demonstrate the effectiveness and
improved performance of RuRL for robot navigation.

These rules reduce the redundant space and accelerate the
early exploration to provide coarse-grained learning, which is

1Compared to the triangular and square grids, the hexagonal grid has six
equidistant action directions with higher degree of freedom, and may better
conform to uneven ground under the same unit area. The formed trajectory may
be smoother in hex-grid maps [24] Moreover, biological investigations [25]
also suggest that neural cognition of spatial navigation is hexagonal. Hence, we
rasterize environments into hexagonal grids here.

followed by fine-grained learning using the RL methods with
improved efficiency. The efficiency is verified by experiments
on real-world mobile robot systems in hex-grid environments.

The rest of this article is organized as follows. Section II
introduces basic concepts of RL and related work about the
efficient exploration methods for RL. Section III presents the
integrated RuRL algorithm, including the rule of wall-following,
the reduction rule, and the Pledge rule. The experimental results
are discussed in Section IV. Finally, Section V concludes this
article.

II. PRELIMINARIES AND RELATED WORK

A. Reinforcement Learning

RL is originated from the idea of MDPs in the field of
optimal sequential decision-making problems. A finite MDP is
a tuple of 〈S,A, T,R, γ〉, where S is the set of states, A is
the set of actions, T : S ×A× S → [0, 1] is the state transition
probability upon taking action a in state s, R : S ×A→ R is
the reward function, and γ ∈ [0, 1) is the discount factor. A
policy, π : S ×A→ [0, 1], defines how a learner interacts with
the environment by mapping perceived environmental states to
actions, and

∑
a∈A π(a|s) = 1∀s ∈ S. The success of an agent

depends on how to maximize the total rewards in the long
run when acting under some policy π. The goal of RL is to
find an optimal policy π∗ = argmaxπ J(π) that maximizes the
expected long-term return from the distribution

J(π) = Eτ∼π(τ)[r(τ)] = Eτ∼π(τ)

[ ∞∑
t=0

γtrt

]
(1)

where τ = (s0, a0, s1, a1, . . .) is the learning episode, π(τ) =
p(s0)Π

∞
t=0π(at|st)p(st+1|st, at), rt is the immediate reward

received on the transition from st to st+1 under action at.
The expected total reward when executing action a in state s

is related to the optimal action-value function Q∗(s, a) as

Q∗(s, a) = max
π

Eπ

[∑∞

t=0
γtrt|st = s, at = a

]
(2)

and satisfies the Bellman optimality equation [26]

Q∗(s, a) = Es′

[
r + γmax

a′
Q∗(s,′ a′)|s, a

]
. (3)

For a discrete state-action space, the popular Q-learning [16]
updates the action-value function with a learning rate α as

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s,′ a′)−Q(s, a)

]
.

(4)
In learning, the transition tuples (s, a, r, s′) are generated by a be-
havior policy that can be any exploration policy in principle. Us-
ing these transitions, the Q-function is iteratively updated until
converging to the optimal value function Q∗(s, a), and the opti-
mal policy is naturally derived as π∗(a|s) = argmaxa Q

∗(s, a).
To ensure that π converges to the optimal policy, we can select
the behavior policy to be ε-soft (e.g., the ε-greedy policy) so that
each state-action pair will be visited for an infinite number of
times theoretically. More details about Q-learning can be found
in [16].
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B. Related Work

Learning control methods have been widely investigated for
solving complex robot control problems. It signifies that the
control system develops representations of the system’s mathe-
matical model and derives optimal control laws. Many learning
control techniques have been applied to control systems, mainly
consisting of iterative feedback tuning, control loop learning,
and machine learning methods. For example, to cope with a class
of second-order servo systems, the iterative feedback tunning
approach employed numerical iterative optimization techniques
based on Hessians of output errors and control signal data from
the closed-loop system [27]. A control loop learning method
applied two PID control loops to a parallel manipulator aiming
to identify models of the robot with a manual approach [28].
To reduce traffic fatalities, supervised learning was employed to
classify different movement events of pedestrians [29].

While RL has confirmed its ability to learn control strategies
for various tasks, e.g., robot navigation, its performance in terms
of sample efficiency is still a major challenge in complex appli-
cations. Many exploration techniques have been investigated to
improve the learning efficiency of RL, which can be categorized
into undirected and directed exploration strategies according
to whether they utilize exploration-specific knowledge of the
learning process itself. Undirected exploration strategies explore
the environment based on randomness, such as ε-greedy [16],
Boltzmann-distributed [16] and Gaussian noise methods [30].
Gaussian noise methods apply Gaussian noise to the action
space or parameter space to generate noisy actions for prov-
ably efficient exploration [30]. Without utilizing any internal
information of the learning process, these exploration strategies
bring exponential regret in discrete MDPs and are limited to
linear function approximations [31].

Directed exploration strategies utilize the previous history
of the learning process and influence the portion of the en-
vironment explored in the future, including count-based [32],
curiosity-driven [31], [33], and upper confidence bounds (UCB)
exploration [34]. For tabular-based RL, count-based exploration
strategies give an extra exploration bonus to frequently visited
states [32]. In large or continuous state spaces, the pseudocounts
methods employ the density model to obtain pseudocounts from
the raw pixels and convert them into an exploration bonus [32].
Neural density model methods utilize the PixelCNN to provide
an exploration bonus derived from an online density model [35].
In large state-action space where the states are rarely visited
multiple times, count-based methods are easy to obtain subop-
timal policies owing to paying more attention to visited states
only [36]. By comparison, we use rules to efficiently reduce
the redundant exploration space in complex environments, and
theoretically prove that the optimal policy is still in reduced
space.

In contrast to count-based methods, curiosity-driven
exploration uses a mechanism for generating intrinsic reward
signals towards seeking out state-action regions that the agent
rarely explores [31]. Intrinsically motivated goal exploration
processes explore more states, which are fewer experienced in
disentangled goal space, and lead to more efficient exploration

than the entangled one [37]. The curious object-based search
agent method [38] learns representations of the environment
without extrinsic reward during the task-free exploration phase,
and can be subsequently applied well in other tasks. Since
the exploration bonus is not dependent on the reward, the
main disadvantage is that the exploration may concentrate
on irrelevant aspects of the environment [34]. In contrast,
our method explores efficiently in smaller space, paying less
attention to the irrelevant aspects of the environment.

Compared to these methods, the UCB methods design a mech-
anism for computing the upper confidence bounds of Q-values,
and add decaying exploration bonuses to frequently visited states
for optimistic exploration [39]. The discounted UCB1-tuned
method considers the variance of reward, and uses the weighted
variance of the Q-values to reduce exploration regrets [40].
UCB exploration via the Q-ensemble method computes the
empirical mean and standard deviation of an ensemble of Q-
value estimates to reduce the uncertainty for exploration [34].
UCB Bernstein approach achieves lower regrets by deriving a
coarse bound on the empirical variance of value functions [39].
While these methods are more efficient with UCB exploration
strategies, the agent may not efficiently learn in large state
space since the regret scales linearly in the dimension of state
space [41]. Here, the improved learning efficiency obtained by
our method is more pronounced in a multiroom environment,
which is supposed to benefit from the rule for efficiently reducing
the redundant exploration space.

III. RURL FOR NAVIGATION

In this section, we present the framework of RuRL with
specific implementations of the rules for generating the closed-
loop trajectory, reducing the exploration space, and guiding the
early exploration strategy. Then, we give the integrated RuRL
algorithm using these implementations.

A. Framework

We focus on the mobile robot navigation problem using RL in
the hexagonal map environments. The simultaneous localization
and mapping (SLAM) system running on the robot operating
system (ROS) platform [42] is employed to construct the map
of the unknown environment. The environment perception tasks
can be tackled by utilizing the scan matching technique from
a fusion between the lidar and ultrasonic sensors. An inertial
measurement unit (IMU) sensor is used to estimate the rotational
angle for improving the accuracy of the scan matching method.
The map is created by Cartographer algorithms [42], and ras-
terized into hexagonal grids using the double-width coordinate
system [43].2

One fundamental problem faced by RL for robot navigation is
that the state space can be vast, and consequently, there may be a
long delay before the reward is received. By applying a machine
learning method to automatically discover useful rules, RBML
allocates the learning mode in the cooperation rules, making the

2Based on two orthogonal axes, the double-width coordinate system steps to
the right by 1 unit, and steps to the below by 2 units [44]
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Fig. 1. Flow diagram of rule-based RL for robot navigation.

algorithm effective and flexible. The individually interpretable
rules are clearly defined and applied to challenging tasks that
are time-consuming or difficult for data-driven methods. These
rules can model domain-specific knowledge and help speed up
the RL process. Hence, we design several rules to facilitate
the navigation performance using RL under a hex-grid map
environment. First, a closed-loop trajectory is generated using
two specific trajectories, i.e., Tl and Tr, obtained by the left-
and right-hand rules, respectively. Second, based on the closed-
loop trajectory, the space reduction rule is employed to form a
reduced closed-loop state-action space for reducing redundant
exploration space using a proper optimization step K. Finally,
in the reduced space, when the number of learning steps exceeds
a threshold value E without reaching the goal, the Pledge rule
is utilized to guide the exploration strategy for finding the goal
with fewer steps at the early learning stage. In the article, we
adopt the widely used Q-learning as the basic implementation
algorithm. The framework of RuRL is illustrated by the flow
diagram, as shown in Fig. 1, and the rules and the integrated
algorithm are presented in detail in the following sections.

B. Rule for Generating the Closed-Loop Trajectory

After the SLAM system obtains the environment map, we
rasterize it into hexagonal grids, as shown in Fig. 2. In hexagonal
grids, each state has more action options than in the square
grids, making the planned path smoother. We adopt the widely

Fig. 2. Coordinate system of the hexagonal map.

used double-width coordinate system to calibrate the hexagonal
environment. The origin of the coordinate system is at the top
left corner, and the adjacent hexagonal grids along the horizontal
and the vertical coordinate axis differ by one and two units,
respectively. Let l and w denote the length and width of the
map. Then, the numbers of columns and rows of the hex-grid
map m and n are calculated as{

(n− 1) ∗
√

3
2 ∗ a = w

(m+ 1) ∗ 3
2 ∗ a− a = l

(5)

where a is the hexagonal edge length. Given a state that cor-
responds to a hexagonal grid, there are six available actions.
Correspondingly, from the first perspective of the mobile robot,
the six available actions are: front (F ), right front (RF), right
rear (RR), rear (R), left rear (LR), and left front (LF).

Since the direction of the main angle of view changes when
the robot moves, we need to record the previous action at−1

to determine the perspective of the robot at the current time
step t. For example, when at−1 = RF, the main angle of view
is the direction of the right front from the perspective of the
mobile robot. Now, we aim to use the left- and the right-hand
rules to generate a closed-loop trajectory along the wall. The
right-hand rule is explained as follows, and the left-hand rule can
be understood in a similar way. To design the right-hand rule of
always walking right, we define the priority of action selection
as RF > F > LF > LR > R > RR. That is, in any state st, the
mobile robot will first try to choose the RF action if it can pass
through the right front direction. If not, the mobile robot will try
to select the action in the order of F,LF,LR, R,RR until it can
find a direction to take a valid step. The action selection strategy
is executed following the right-hand rule until the mobile robot
navigates to the goal point. We record the sequence of the states
and actions as the right-hand trajectory Tr and the left-hand
trajectory Tl as

Tr = {sr1 , ar1 , sr2 , ar2 , . . ., srp}
Tl = {sl1 , al1 , sl2 , al2 , . . ., slq}

(6)

where p and q are the numbers of the traversed states in the right
and the left trajectories, respectively. srp and slq are the same
goal state. To better illustrate the left- and the right-hand rules,
Fig. 3 presents a simple example of navigating in a hexagonal
grid map, and Algorithm 1 summarizes the rule for generating
the closed-loop trajectory.
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Fig. 3. Simple example of using the left- and right-hand rules to navi-
gate in a hexagonal grid map. B is the starting point and G is the goal
point. The selected actions are indicated by the red arrows. The other
available actions are indicated by the dotted solid circular arrows. The
main angle of view is indicated by the black arrows. (a) Left-hand rule.
(b) Right-hand rule.

C. Rule for Reducing the Exploration Space

After obtaining the left- and the right-hand trajectories, the
available states that the mobile robot can access are on or inside
the closed loop. Obviously, the trajectory itself, Tl or Tr, is a
feasible while not necessarily optimal path that navigates from
the starting point to the goal. If we can properly reduce the
length of the left- and right-hand trajectories, we will obtain
a smaller closed-loop trajectory that can effectively reduce the
redundant exploration space. Hence, we employ the reduction
rule to optimize the two trajectories Tl and Tr, respectively. The
reduction process on the right-hand trajectory is explained as
follows, and the operation on the left-hand trajectory can be
understood in a similar way.

Our main idea is that, given two states on the right-hand
trajectory, we aim to find out whether there exists a shorter path
between the two states than the path on the trajectory. If it does
exist, we can replace the original path on the trajectory with
the shorter one, thus obtaining a new trajectory with a reduced
length. To implement this idea, we need to first formally define
the step distance between two given states and the trajectory
distance between two states on the trajectory.

Definition 1 : (Step distance): The step distance is defined as
the number of the least steps of actions needed to transit from s
to s′ (analogous to the definition in [45]). Specifically, the step
distance between the same states is 0 and the step distance from
one state to its adjacent states is set as 1.

Definition 2 : (Trajectory distance):Given two states s and s′

on the left- or the right-hand trajectory, their trajectory distance
is defined as the number of the least steps of actions needed to
transit from s to s′, while the intermediate states should also be
on the trajectory.

Based on the definition of step distance and the fact that there
are 6KK-step hexagonal grids around the center grid, we further
define the K-step reachable states.

Definition 3 :K-: (step reachable states): Given the state s =
(i, j), a state s′ is called theK-step reachable state of s if the step
distance between s′ and s isK. There exist 6K states whose step
distance from s is K, and these 6K states are called the K-step
reachable states of s.

Based on the definition of K-step reachable states,
we are able to easily figure out the potentially shorter
path between two states on the trajectory. Given a state
s on the right-hand trajectory, we first obtain its K-step
reachable states. For example, when K=2, those 12 states are
(i− 4, j), (i− 3, j + 1), (i− 2, j + 2), (i, j + 2), (i+ 2, j +
2), (i+ 3, j + 1), (i+ 4, j + 1), (i+ 3, j − 1), (i+ 2, j −
2), (i, j − 2), (i− 2, j − 2), (i− 3, j − 1). If any reachable
state is on the Ttemp, which is the sequence after the current state
on the right-hand trajectory, we compute the trajectory distance
from the given state to the reachable state. If the trajectory
distance is greater than K, it indicates that we have discovered
a shorter path between them instead of the original path on
the trajectory. Hence, we can replace the original path with
the new K-step path Tj , resulting in an improved right-hand
trajectory.3 We apply this reduction rule for every state in the
right-hand trajectory, and obtain an optimized trajectory T K

r .
In similar way, we can obtain the optimized left-hand trajectory
T K
l . Together, a smaller closed-loop trajectory is formed.

Algorithm 2 summarizes the rule for reducing the exploration
space.

Fig. 4 presents a simple example of optimizing the closed
loop trajectory. In Fig. 4(a), the path trajectory has been marked
as a light gray area, in which actions are selected using the
left-hand rule. In Fig. 4(b), from the start state to the end state
of the trajectory obtained in Fig. 4(a), we sequentially generate
a 1-step reachable state T 1

reach for each state and match it with
the subsequent trajectory. If the match is successful, we replace
it with a new 1-step path, and otherwise we do the same for
the next state. For example, the original path is C → C2→ C3
and D → D1→ D2, which can be optimized as C → C3 and
D → D2. After optimization, we obtain the optimized closed-
loop space, which is inside the light gray trajectories, as shown in
Fig. 4(c). In the closed-loop space formed after the optimization
ofK = 1, we will optimize withK = 2. The process is similar to
that in Fig. 4(a)–(c), as a detailed process shown in Fig. 4(d)–(f).

Intuitively, the optimized trajectories can form an im-
proved closed loop for more efficient exploration. Furthermore,
Theorem 1 presents the theoretical analysis that the optimized
trajectories correctly reduce the redundant exploration space.

3When the optimized step size isK, there are 2K − 1K-step reachable paths,
and Tj is one of them.
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Fig. 4. Simple example of optimizing the closed-loop trajectory using different optimization steps of K = 1 (a)–(c) and K = 2 (d)–(f). The selected
actions are indicated as red or yellow solid arrows. The actions before optimizing the trajectory are indicated as dotted arrows. The closed-up view
on the left side of (b) and (e) shows the K-Step reachable states. The reduced exploration space is indicated as light blue hexagonal grids.

Theorem 1: Let s, s′ be two states on the right-hand trajectory,
with their step distance being K and their trajectory distance
being J . Let v(s′) be the value function of state s′. Let π1

and π2 denote the policies of navigating from state s to state
s′ following the original path on the right-hand trajectory Tr
and the optimized path on the optimized right-hand trajectory
T K
r , respectively. vπ1(s) and vπ2(s) are the value functions of

state s when executing policy π1 and π2, respectively. Then, for
any J ≥ K, we have vπ1(s) ≤ vπ2(s).

Proof: When executing policy π1, assume that s1
π1
, . . ., sJ−1

π1

are the sequential states between states s and s′. According to
the Bellman equation [16], [26], the value function of state s is

vπ1(s) = Eπ1

[ ∞∑
i=0

γiri|s0 = s

]

=
∑
a

π1(a|s)
∑
s′′

p(s′′|s, a)(r + γvπ1(s
′′))

= r + γvπ1(s
1
π1
) = r + γ(r + γvπ1(s

2
π1
)) = . . .

= (r + γr + · · ·+ γJ−1r) + γJ−1vπ1(s
′)

=
1− γJ

1− γ
r + γJ−1vπ1(s

′).

In a similar way, the value function of state s when executing
policy π2 is

vπ2(s) =
1− γK

1− γ
r + γK−1vπ2(s

′).

We can set state s′ as the terminal state. Then, we have vπ1(s
′) =

vπ2(s
′) = 0, and

vπ1(s)− vπ2(s) =
γK − γJ

1− γ
r.

Since J ≥ K, 0 ≤ γ ≤ 1, and r ≤ 0 in the navigation domains,
we have vπ1(s) ≤ vπ2(s). �

Theorem 1 proves the effectiveness of trajectory optimization.
Suppose that T ∗ is the optimal path in the original closed loop
formed by trajectories Tl and Tr. Next, we present and prove
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Fig. 5. Illustrative example for proving that the optimal path is still
within the closed-loop C. The trajectories T K

l , T K
r are indicated as red

and yellow solid arrows. The optimal path assumed T ∗ is indicated as
black solid arrows. The intersecting positions of T K

l , T ∗ are indicated as
D and G.

Theorem 2, which demonstrates that the optimal path T ∗ is still
within the closed loop formed by T K

l and T K
r .

Theorem 2: Let C denote the closed-loop region formed by
T K
l and T K

r . For any optimal path T ∗, we have T ∗ ⊆ C.
Proof: We assume that there is an optimal path T ∗, and T ∗ �
C. Since both the starting and goal points are on C, T ∗, and T K

l

(or T ∗ and T K
r ) intersect at least twice. We assume that the

two intersecting positions are D and G, as shown in Fig. 5. The
trajectory distances from B to G on T K

l and T ∗ are J and I ,
respectively. The trajectory distances from D to G on T K

l and
T ∗ are j and i, respectively. Let π∗, π1, and π2 denote policies of
navigating from state B to state G following the path on T ∗, the
path on T K

l , and the path composed of the trajectory B → D
on T ∗ and D → G on T K

l , respectively. Since T ∗ is the optimal
path, we have I < J , vπ∗(B) > vπ1(B), and vπ∗(B) > vπ2(B).
According to the reduction rule, we have j < i. Furthermore, we
have vπ2(D) > vπ∗(D) according to Theorem 1. Sinceπ∗ andπ2

share the same subpath from B to D, we have vπ2(B) > vπ∗(B).
It is contradictory to the assumption that T ∗ is the optimal path.
Hence, the assumption does not hold. Then, for any T ∗, we have
T ∗ ⊆ C. �

When the optimization step is K, there are 6K hexagon
grids around the center point to be optimized. Let n denote the
length of the trajectory to be optimized. Then, the complexity
of the optimization algorithm is 6nK, i.e., O(nK). It can be
observed that selecting K with an enormous value will linearly
increase the computational cost of trajectory reduction. On the
other hand, a larger K generally leads to a smaller closed-loop
trajectory, which can reduce the redundant exploration space to
a more considerable extent. In practice, a moderate value of K
(e.g., 2− 4) is sufficient to obtain efficient performance.

D. Rule for Guiding the Early Exploration Strategy

In the reduced exploration space, we use the closed loop
formed by the optimized trajectories as the new navigation
environment. While the agent can learn more efficiently in the
reduced space, the agent still needs to explore many steps to find
the goal point at the early stage. We employ the Pledge rule [46]
to accelerate the early learning performance when the number

of steps exceeds a threshold value without finding the goal. The
counter-clockwise method of the Pledge rule is explained as
follows. Similarly, the clockwise way operates.

In the Pledge rule (counter-clockwise), the agent first needs
to choose an initial action direction, and moves towards this
action direction with priority. Next, to meet the priority of the
initial action direction selected, we employ the sum of turns
θ to record the changes of the action direction and update the
main angle view of the mobile robot by the previous action
apast. When an obstacle is met, the sum of turns θ is added by
1 per 60◦ if the clockwise turn is positive, and is subtracted
by 1 per 60◦ otherwise. Finally, for the purpose of avoiding
traps, if the overall turning angle θ is 0, the agent will take
action in the priority order of F > LF > LR > R > RR > RF
(defined as Θ0 rule). Otherwise, the agent will choose an action
in the priority order of RF > F > LF > LR > R > RR, which
operates in the same way as the right-hand rule in Section III-
B. By recording the sum of the turns θ and keeping the initial
direction, the Pledge algorithm can find the goal point, regardless
of the initial position of the agent. The clockwise method that
counts the overall turning angle θ is opposite to the counter-
clockwise method, and the Pledge algorithm is summarized in
Algorithm 3.

To utilize the Pledge algorithm to improve the exploration ef-
ficiency, we use the counter-clockwise method when the number
of learning episodes η is odd and employ the clockwise method
otherwise. We design a decay function for the threshold value
of learning steps as

E =
Mmax

ω ∗ η + b
(7)

where Mmax is the maximum learning steps per episode and η is
the number of the current episode. b tunes the expected number
of threshold steps in previous episodes, and ω controls the decay
rate. Generally, a smooth decay function (e.g., ω = 0.15 and
b = 10) can obtain effective improvement with the Pledge rule
for guiding the agent to explore.
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E. Integrated RuRL Algorithm

With the abovementioned implementations, the integrated
RuRL for navigation algorithm is summarized in Algorithm 4.
First, in the original environment, the RL agent obtains trajecto-
ries Tl, Tr through left- and right-hand rules in Line 1. Second,
we employ the rule for optimizing the initial trajectories and
reducing exploration space in Lines 2 and 3, and generate a
smaller navigation environment. Third, in the new environment
with the reduced space, we employ RL to learn the optimal
policies in Lines 4–21. Finally, we employ the Pledge rule to
accelerate the early learning performance for a small number of
episodes when the number of steps exceeds a threshold value
without finding the goal in Lines 8–13.

Remark 1: When the starting point is not adjacent to the wall,
the Pledge rule can solve this problem [46]. When the goal point
is not adjacent to the wall, we can solve it by setting the subtarget
point near the goal point. To highlight the usage of rules, we only
consider the situation where both the starting and goal points are
adjacent to the wall in this article.

IV. EXPERIMENTS

We conduct two sets of experiments to evaluate the feasibility
and effectiveness of RuRL. One is the single-room navigation
tasks consisting of the obstacle-free map and the map with

obstacles. The other is the multiroom navigation with a large
and complex map, where conventional methods tend to explore
inefficiently or converge to suboptimal policies.

A. Experimental Settings

Since we aim to utilize rules to improve the exploration
efficiency of RL in navigation domains, we focus on comparing
RuRL to three baselines: RL without rules, RL with count-
based exploration, and RL with UCB-based exploration [35],
[40]. We employ the learning curve and total learning steps
as the performance metrics. For single-room experiments, the
Q-learning [16] algorithm with the ε-greedy strategy is in-
vestigated to evaluate the effectiveness of RuRL. Further-
more, the Q-learning [16] and SARSA [16] algorithms with
the ε-greedy and the Softmax exploration strategies are in-
vestigated in the complex task. Besides, we compare our
method with classic robot navigation methods, including A*
and ACO heuristic algorithms, and utilize the length of the
final planned path and the direction switching times of the
path as the performance metrics. More details can be found
in [47] and [48].

In all environments, we use the double-width coordinate
system, where the state is the two-dimensional coordinate (i, j),
and available actions are: North towards (i− 2, j), Northeast
towards (i− 1, j + 1), Southeast towards (i+ 1, j + 1), South
towards (i+ 2, j), Southwest towards (i+ 1, j − 1), and North-
west towards (i− 1, j − 1). When robots collide with obstacles,
they bounce to the previous position. For all experiments, the
reward is 100 if reaching the target, −100 if heading towards
obstacles, and−1 otherwise. The hyperparameters are the same
for all tested algorithms in each group of experiments: learning
rate α = 0.01 and discount factor γ = 0.99. Additionally, in
the count-based exploration strategy, we use N(s, a) to ex-
plicitly refer to the number of visits of a state-action pair in
the learning process, and use an exploration bonus of the form

R+(s, a) =
√

β
log[N(s,a)+1] , where β is set as a constant 0.4. In

RL with UCB-based method, we use the same exploration ratio
settings as the ε-greedy strategy, and set the same parameters
to all the tested algorithms: the damping factor d = 0.9 and the
tendency of exploration constant C ′ = 0.01. More details about
parameter settings of RL with the UCB-based method can be
found in [40]. Additionally, the Euclidean distance is used for
the heuristic function in the A* algorithm. In the ACO method,
the number of ants is set as 100, and the other parameter settings
can be found in [48]. The navigation maps, constructed from
real environments by a SLAM mobile robot with high-precision
lidar, ultrasonic, and IMU sensors running on the ROS Kinetic
platform, are hexagonally rasterized on the MATLAB simu-
lation platform. The environment perception control systems
operate on an industrial PC (CPU: ARMv8 1.2 GHz, GPU:
400 MHz VideoCore IV). All the experiments are carried out
on an Intel Core i7-7700 3.60 GHz PC with 16 GB RAM under
Windows 10. The experimental results given are averaged over
50 runs.
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Fig. 6. Physical size of the single-room navigation experimental envi-
ronments is 465× 458cm. Using (5), the environment is rasterized into
a hexagonal map with 35 rows and 19 columns after setting the grid
length as a = 15.8cm. (a) Real environment. (b) Env 1: obstacle-free.
(c) Env 2: with obstacles.

Fig. 7. Average steps per episode of RL without rules, RL with count-
based, RL with UCB-based, and RuRL in single-room navigation tasks.
(a) Env 1. (b) Env 2.

B. Tasks in Single-Room Environments

The real single-room environment is shown as in Fig. 6(a).
Using a SLAM mobile robot, we constructed maps of the
obstacle-free environment and the environment with obstacles,
as shown in Fig. 6(b) and (c), respectively. The maps are raster-
ized with hexagonal grids, where the gray indicates the unknown
area, the black indicates obstacles, and the white indicates the
feasible area. For both environments, the starting point is set as
(34, 17) with the green mark, and the goal point is set as (3, 2)
with the red mark. The maximum number of learning episodes
is set as 7000, and the maximum number of learning steps per
episode is set as Mmax = 10000. The optimization step K is
set as three for reducing the exploration space. The exploration
ratio is e−0.001∗η(η < 3500) and 0 otherwise. Parameters of the
Pledge rule are set as N = 100 and E = 10 000

0.2∗η+8 . Fig. 7 shows
the learning curve and Table I presents corresponding numerical
results.

TABLE I
NUMERICAL RESULTS IN TERMS OF TOTAL LEARNING STEPS OF

ALL TESTED ALGORITHMS IN SINGLE-ROOM TASKS

First, all tested methods are implemented by the Q-learning
algorithm. The ε-greedy exploration strategy is used for RuRL,
RL without rules, and RL with count based. As shown in
Fig. 7(a), all methods can find the optimal path with 23 steps
in Env 1. We observe that RL with count-based, RL with UCB-
based, and RuRL methods perform well compared with RL
without rules. The RL with count-based method demonstrates
that internal reward signals positively affect the middle learning
stage. Compared to the RL without rules, RL with UCB-based
approach obtains slightly superior performance with reduced
regrets for efficient exploration throughout the learning process.
In contrast, RuRL obtains the best performance by improving
the exploration efficiency, which may benefit from the Pledge
rule, where the efficiency of the rule for reducing the redundant
space is minor. Table I shows that the steps are already reduced
by 51.46% when K = 3 compared to RL without rules. Under
the situation that they all find the optimal path, A* and ACO algo-
rithms need to switch directions for 11 and 13 times, respectively,
while RuRL only requires three times.4 Frequently switching
directions will slow down the speed of mobile robots with more
energy consumed and may be critical for the performance of the
robot motion kinematics [49].

Next, we test RuRL in Env 2 with obstacles, as shown in
Fig. 6(c). From Fig. 7(b), we can find that all tested algorithms
can obtain the optimal path with 23 steps. We also find that RuRL
has greater performance improvement than that in Env 1, but the
performance of RL with count-based and RL with UCB-based
methods is slightly improved. When there are more obstacles, the
rules of reducing the redundant space play a more active role in
enhancing exploration efficiency. It can be obtained from Table I
that the learning steps of RuRL are nearly 62.52% less than
that of RL without rules. In general, RuRL can accelerate the
learning process to a large extent, especially in the environments
with obstacles. Furthermore, the planned paths of A*, ACO, and
RuRL methods need to switch directions for 11, 9, and 7 times,
respectively.4

C. Tasks in Multiroom Environments

To further test the performance of RuRL, we use a larger and
more complex navigation environment composed of multiple
rooms, as shown in Fig. 8. The starting point and target point
of Env 3 are set as (85, 56) and (3, 22). The maximal numbers
of learning episodes and learning steps per episode are set as

4See Appendix A in Supplementary Materials for details.
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TABLE II
HYPERPARAMETERS IN ENV 3

TABLE III
NUMERICAL RESULTS IN TERMS OF TOTAL LEARNING STEPS OF ALL TESTED ALGORITHMS IN MULTIROOM TASKS (ENV 3)

Fig. 8. Env 3: the multiroom navigation environment (1640 cm×
1960 cm) rasterizated into an 87× 59 hexagonal grid map using (5).

15 000 and 20 000, respectively. The bonus coefficient of count-
based exploration strategy β is set as 0.5. Other hyperparameters
corresponding to the exploration strategy and the Pledge rule can
be found in Table II.

In the multiroom task, the A* and ACO approaches obtain
suboptimal paths with 73 and 74 steps and need to switch
directions for 29 and 27 times, respectively. In contrast, RuRL
requires only 14 times of switching directions while learning the
optimal path with 72 steps, where RuRL is implemented by the
Q-learning algorithm with ε-greedy exploration strategy. Com-
pared with A* and ACO algorithms, RuRL can find smoother
paths with a potentially better optimality guarantee.4

Furthermore, Fig. 9 presents the learning steps of all tested
algorithms implemented by Q-learning and SARSA with the
ε-greedy and Softmax strategies, and Table III shows corre-
sponding numerical results. It is clear that the number of learn-
ing steps of RL with count-based, RL with UCB-based, and
RuRL methods is lower than that of RL without rules. The RL
with count-based method improves the performance with the
ε-greedy strategy, and obtains suboptimal policy with 74 steps
due to paying more attention to visited states. However, it obtains
reduced performance improvement with the Softmax strategy.
Compared to the single-room tasks, the improvement of RL with
UCB based is reduced to 1.18% since the regret scales linearly
in the dimension of the state space. In contrast, RuRL enables

Fig. 9. Performance of all tested methods implemented by Q-learning
and SARSA in the multiroom environment. The ε-greedy and Softmax
strategies are used for RuRL, RL with count based, and RL without
rules. (a) Q-learning with ε-greedy. (b) Q-learning with Softmax. (c)
SARSA with ε-greedy. (d) SARSA with Softmax.

the agent to make quicker progress than the others on finding
the optimal policy. Taking the implementation of Q-learning
with ε-greedy strategy as an example, the total learning steps
are reduced by 71.79% when using the proposed rules with
K = 3. Consistent with observations in Section IV-B, RuRL
better improves the learning performance in multiroom tasks,
which is supposed to benefit from the distinct space reduction
and the Pledge rule for finding the goal with fewer steps.

In addition, we analyze the learning performance of RuRL as
the optimization step K increases. We also adopt a statistical
approach to analyze the relationship between the number of
episodes N with the Pledge rule employed and the performance
of RuRL (see Appendix B and Appendix C in Supplementary
Materials for details).
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V. CONCLUSION

In this article, we propose a RuRL algorithm for efficient
robot navigation with space reduction, where three rules are
applied to reduce the redundant exploration space and guide
the exploration strategy. Then, we evaluate RuRL on the single-
room environments and a multiroom environment, where the
maps are built using a SLAM mobile robot. Experimental results
demonstrate that RuRL can efficiently improve the navigation
performance with good scalability. Our future work will focus
on more practical rules for advanced RL methods in the field of
complex robotic control.
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