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Reinforcement Learning-Based Optimal Sensor
Placement for Spatiotemporal Modeling
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Abstract—A reinforcement learning-based method is proposed
for optimal sensor placement in the spatial domain for modeling
distributed parameter systems (DPSs). First, a low-dimensional
subspace, derived by Karhunen–Loève decomposition, is iden-
tified to capture the dominant dynamic features of the DPS.
Second, a spatial objective function is proposed for the sen-
sor placement. This function is defined in the obtained low-
dimensional subspace by exploiting the time-space separation
property of distributed processes, and in turn aims at minimizing
the modeling error over the entire time and space domain. Third,
the sensor placement configuration is mathematically formulated
as a Markov decision process (MDP) with specified elements.
Finally, the sensor locations are optimized through learning the
optimal policies of the MDP according to the spatial objective
function. The experimental results of a simulated catalytic rod
and a real snap curing oven system are provided to demonstrate
the feasibility and efficiency of the proposed method in solving
the combinatorial optimization problems, such as optimal sensor
placement.

Index Terms—Distributed parameter systems (DPSs),
Karhunen–Loève decomposition (KLD), optimal sensor
placement, reinforcement learning (RL), spatiotemporal
modeling.

I. INTRODUCTION

OPTIMAL sensor placement techniques play a significant
role in spatiotemporal modeling [1] of the distributed

parameter systems (DPSs). The sensor failures of not respond-
ing precisely can cause harmful influences on the entire life of
the relevant process equipment, and increase operational dif-
ficulties to fulfill specific environmental needs. The modeling
and control of DPSs are usually confined by the type and
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corresponding cost of available sensors. To ensure good reli-
ability for the modeling and control of DPSs, the available
information measured by the limited number of sensors should
be efficiently utilized to provide an overall estimation for the
entire area of the physical system, such as the unobserved
states and unknown parameters. It may be possible to install
a large number of sensors to measure numerous aspects of
the physical field. However, this can be infeasible in prac-
tice due to expensive initial and maintenance costs. The state
and parameter estimation techniques can provide an alternative
solution for this problem, where other variables and parameters
can be reconstructed accurately by strategically measuring the
essential variables with a limited number of sensors. In order
to obtain the most benefit from this technique, the available
sensors should be placed at optimal locations.

Optimizing the sensor locations within a distributed process
is challenging since most distributed processes are intrinsi-
cally nonlinear with infinite dimensions. Based on the dynamic
linear systems theory, early methods for state estimation
in DPSs exploited the optimal state-space observers derived
from approximation models of the partial differential equation
(PDE), such as finite difference method [2] or finite element
method [3]. Many measures had been exploited to sensor
placement on a distributed system, such as error covariance
matrix of Kalman filters [4], the trace and the determinant of
error matrix [5], estimation error caused by the unobservable
subspace [6], and variable measurement structures [7]. The
other kind of measures for sensor placement was based on the
observability Gramian or the observability matrix [8], such
as the smallest eigenvalue/determinant/trace of the inverse of
the Gramian [9], the condition number of the observability
matrix [10], and the trace and the spectral norm of the observ-
ability Gramian [11]. Other measures included measurement
independence [12], the determinant of the Fisher information
matrix [13], reliability using the probability of sensor fail-
ure [14], cost constrained by data reconciliation [15], the
best compromise between the measurement cost, the pro-
cess information [16], etc. These early alternatives had been
applied only to linear systems and/or to a small number of
sensors without any general systematic method [17]. Most of
the above approaches relied on complex control assumptions
and schemes, or an exhaustive search over a large set of candi-
date placements that were defined beforehand. Therefore, they
were infeasible for complex nonlinear systems which required
a high-dimensional representation.

Assume that we have only m sensors out of n candidate
placements (m < n), where n depends on the resolution of the
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discretized physical system. The task is to figure out the avail-
able m sampling locations so that the predefined measure can
be optimized. That is, we need to choose the most informative
m locations from the assumed n ones. The complexity of the
optimal sensor placement is considered to be NP-hard [18].
It can be theoretically solved by a brute-force method that
inspects every optional placement for the m sensor locations

out of the

(
n
m

)
combinations. Under the circumstance, the

computational complexity is exponential owing to the com-
binatorial property, which makes these approaches unpractical
even if the values of n and m are modest. There are mainly five
types of approaches for the NP-hard optimal sensor placement
problem: 1) proper orthogonal decomposition (POD)-based
methods; 2) convex optimization methods; 3) greedy methods;
4) heuristics; and 5) machine learning techniques.

POD-based methods [19]–[22] focused on placing sensors
using the spatial structure of the underlying phenomena, that
is, the decomposed low-dimensional modes. The sensor loca-
tions could be heuristically arranged at the extrema of the POD
modes in fluid community [19], [23], [24], or to be optimized
by a guided search on the spatial subspace [17], [20]. The
major drawback was that POD was sensitive to experimental
settings, such as input signals, initial conditions, and the num-
ber of snapshots [1]. Moreover, using a finite number of POD
mode amplitudes as state estimators was sometimes inaccu-
rate, as the relevant aerodynamic properties were not always
linearly related to the small subset of selected modes [25].

Convex optimization methods [26] were based on relax-
ing the Boolean constraints {0, 1}n that represented the
sensor locations to the convex set [0, 1]n. This relaxation
was commonly not tight and heuristic tricks were often
added to optimize the sensor locations. As there was no
prior guarantee on the distance from the optimal placement,
Joshi and Boyd [26] derived an online bound for the quality of
the obtained placement based on the gap between the primal
and the dual problem. Meantime, this approach required that
the optimization objective and the feasible set were convex.

Greedy algorithms, leveraging the submodularity of the
objective functions [27], [28], simplified the problem by using
a series of optimal local steps instead of global ones. A
greedy algorithm was proved to have polynomial complex-
ity and result in a suboptimal solution that performed within
a (1 − [1/e]) of the optimum [28]–[30]. It had been inves-
tigated in sensor placement applications, such as the fluids
flow reconstruction [31] and the ocean modeling [19], [23].
This approach required the objective functions to be submod-
ular in general. However, common criteria, such as A-, D-,
and E-optimality, could not be addressed using the concept of
submodularity [29].

Heuristic methods were valid alternatives to reduce the
expensive cost of the brute-force search. Challenges regarding
the NP-hard problems made heuristics the feasible alternative
for various complex optimization problems in the real-world
applications. Many kinds of heuristics had been applied
to the sensor placement configuration, including subspace-
based guided search [17], [20]; tabu search [32]; entropy-
based heuristic [33]; clustering-based heuristic [34]; simulated

annealing [35]; genetic algorithms (GAs) [36]; etc. Moreover,
in the convex relaxation [26] approach, heuristics were also
needed to help choose the sensor locations.

Machine learning techniques, underlying the field of arti-
ficial intelligence and the computer simulation of thinking,
provide a brand new way to address sensor placement prob-
lems that are high-dimensional, complex, and full of uncer-
tainties. Krause et al. [29] modeled the spatial phenomena
as the Gaussian processes and developed a lazy learning
scheme of greedy algorithms for choosing sensor locations.
Kasper et al. [37] learned the constrained placement with a
suitable linear estimator based on randomly generating the
sensor locations. Semaan [25] employed a random forests
algorithm to select the most important input variables as the
optimal sensor locations, which circumvented the necessity for
POD and for optimization. It relied on many sensor inputs and
the selection of response functions during the training phase,
curtailing its direct experimental implementation.

Reinforcement learning (RL) [38], [39] is a machine learn-
ing methodology that has been widely investigated in the areas
of computational intelligence [40]–[45]. Recent breakthroughs
of deep RL algorithms [46], [47] make RL state-of-the-art
technology in the artificial intelligence community. Defined in
terms of optimization of Markov decision processes (MDPs),
RL theory addresses the problem that how an autonomous
active agent learns the optimal policies while interacting with
an initially unknown environment. The self-learning property
from unknown environments makes RL a promising candidate
for the optimization or control of real systems, including evo-
lutionary computation [48], fuzzy control [49], quantum com-
putation [44], computer architecture [50], etc. Nevertheless,
to the best of our knowledge, the RL-based optimization for
sensor placement problem has not been addressed yet.

In this paper, we develop an integrated RL-based optimal
sensor placement method for spatiotemporal modeling of
DPSs. First, a spatial objective function is proposed to evalu-
ate the spatiotemporal modeling performance over the entire
time and space domain. Second, the sensor placement con-
figuration is formulated as an MDP with specified elements
〈s, a, s′, r〉: sensor locations as the state s, change of only
one sensor location as the action a, new sensor locations
as the next state s′, and the objective function of the new
locations as the reward r. Finally, the optimization process is
executed by the iteration of state value functions until con-
verging to an optimal policy, that is, leading to optimal sensor
locations.

The main advantages of applying RL for solving sensor
placement problems lie in five aspects.

1) Defined in a mathematical MDP framework, RL algo-
rithms can theoretically guarantee the convergence
toward the global optimum and, hence, provide a more
stable learning process.

2) RL algorithms learn optimal policies directly from inter-
actions with the unknown DPS environment without a
model. Compared to the analytical methods, the RL-
based method can work with all kinds of objective
functions, circumventing requirements of convexity or
submodularity.
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3) RL algorithms execute an intensified search by exploita-
tion and a diversified search by exploration, which
makes it an efficient method for various NP-hard prob-
lems like optimal sensor placement in this paper.

4) RL algorithms are naturally implemented in a fully
incremental way based on immediate rewards obtained
during task execution [38], [48], enabling online learning
for broad practical applications.

5) When utilizing advanced techniques, such as value func-
tion approximation [51] and deep learning [46], RL
algorithms can overcome the “curse of dimensionality,”
and has an increasing potential for solving extremely
high-dimensional problems.

The experimental results implemented on a simulated cat-
alytic rod benchmark and a real snap curing oven system are
given to show the feasibility and efficiency of the proposed
RL-based optimal sensor placement method.

The rest of this paper sequentially presents the formulation
of the sensor placement problem for a given class of DPSs in
Section II, the integrated RL-based optimal sensor placement
method in Section III, the experiments in Section IV, and the
conclusions in Section V.

II. PROBLEM DESCRIPTION

In this paper, a general class of DPSs is considered, which
can be represented by the following nonlinear PDE:

∂y(x, t)

∂t
= L

(
y,

∂y

∂x
,
∂2y

∂x2
, . . . ,

∂n0y

∂xn0

)
+ B̄(x)u(t) (1)

subject to the mixed-type boundary conditions

q

(
y,

∂y

∂x
,
∂2y

∂x2
, . . . ,

∂n0−1y

∂xn0−1

)∣∣∣∣
x=xa or x=xb

= 0 (2)

and the initial condition

y(x, 0) = y0(x) (3)

where t ∈ [0,∞) is the temporal variable, x ∈ [xa, xb] ⊂ R is
the spatial coordinate, y(x, t) = [y(x1, t), . . . , y(xn, t)]T ∈ R

n

is the spatiotemporal output, and u(t) ∈ R
p is the temporal

input. L ∈ R
n is a complex vector function which contains

a nonlinear spatial differential operator of order n0, B̄(x) is
a matrix function of appropriate dimensions which describes
how the temporal inputs are distributed in spatial domains, q
is a nonlinear vector function, and y0(x) is a smooth vector
function referring to the initial output. A common approach to
modeling the unknown nonlinear DPSs leads to the time-space
separation framework based on Karhunen–Loève decomposi-
tion (KLD) [1], where the spatiotemporal output can be decou-
pled into a set of orthogonal spatial basis functions (BFs) with
corresponding temporal coefficients that captures the most
relevant dynamics of the system, as described in Appendix A.

Calculating the dominant BFs refers to an eigenvalue
problem related to spatial integral operators. The quality
of computed BFs is largely dependent on the precise
information that is measured on the sampling spatial domain.
Unfortunately, that information is only attainable from a
limited number of possibly expensive sensors. This makes
the optimal sensor placement essential for spatiotemporal

modeling of complex DPSs in research and engineering
practice.

Nevertheless, the sensor placement for unknown nonlinear
DPSs is challenging due to the following factors: 1) strongly
nonlinear spatiotemporal dynamics of the physical system;
2) the NP-hard complexity of the placement problem; 3)
the lack of the accurate model of the system; and 4) no
guarantee on convexity or submodularity of the objective func-
tion. In summary, a model-free and computationally efficient
approach in consideration of the unknown nonlinear spatiotem-
poral dynamics is needed to optimize the sensor locations for
modeling this type of DPS.

III. REINFORCEMENT LEARNING-BASED

OPTIMAL SENSOR PLACEMENT

In this section, the integrated RL-based optimal sensor
placement method is presented for spatiotemporal modeling.
First, a spatial objective function is proposed for evaluat-
ing the spatiotemporal modeling performance based on the
reduced-order subspace identified from time-space separation
(Appendix A). Second, the sensor placement problem is math-
ematically formulated as an MDP with specified elements.
Finally, based on the defined MDP, the sensor locations is
optimized according to the spatial objective function after the
convergence of a temporal difference (TD) learning algorithm.

A. Spatial Objective Function

A spatial objective function regarding sensor locations is
derived for evaluating spatiotemporal modeling performance.
By taking advantage of the time-space separation property, it
is defined on the reduced-order subspace obtained by KLD,
and aims at minimizing the reconstruction error over the entire
time and space domain.

1) Reduced-Order Subspace: Assume that Y = {yj}lj=1
is the spatiotemporal output data set of the given PDE
system (1), where yj = y(x, tj) is a vector of the possi-
ble n spatial measurements at time j. By KLD, the subspace
� = [ϕ1(x), . . . ,ϕk(x)] is obtained as a set of k orthonormal
and n-dimensional BFs, representative of the original system
space with a minimum number k of degrees of freedom. The
measurements y can be expressed in terms of � as

y = �c+ ε (4)

where c ∈ R
k is the temporal modes in the low-dimensional

space and ε ∈ R
n is zero-mean independent identically

distributed (i.i.d.) Gaussian noise with variance σ 2 in each
dimension.1

2) Measurements Projection: The operator Pm ∈ R
m×n

is defined to project a vector of measurements y ∈ R
n on

its m subcoordinates in order to get the candidate measure-
ments ym = Pmy with reduced dimension. It projects the

1ε consists of two parts ε = ε1 + ε2. ε1 ∼ N (0,�1) is the i.i.d.
Gaussian distributed truncation error on Karhunen-Loève reconstruction [52],
[53], where �1 is a diagonal covariance matrix with each diagonal ele-
ment being σ 2

1 . ε2 ∼ N (0, �2) is the i.i.d. Gaussian noise that perturbs
the measurements [26], [53], with each diagonal element of �1 being σ 2

2 .
According to the property of Gaussian independent random variables, we
have ε ∼ N (0, �1 + �2), where each diagonal element of the covariance
matrix is σ 2 = σ 2

1 + σ 2
2 .
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reduced-order plane in (4) onto its m coordinates, denoted as
measurement subspace Mm, so that

ŷm = Pm�ĉ+ Pmε (5)

where Pmε is the projection error.
3) Least-Squares Problem: The modeling on space Mm

leads to find the temporal coefficient vector ĉ that minimizes
the distance between the real data ym and its estimate ŷm. It is
equivalent to the minimum least-squares problem as follows:

min
ĉ

(
ym − Pm�ĉ

)T(
ym − Pm�ĉ

)
. (6)

The maximum likelihood solution [53] of c is

ĉ = (
QT

mQm

)−1
QT

mym (7)

where Qm = Pm�. The operator Pm, which characterizes
the available measurements, is assumed to span R

k [26].
The least-squares error is conditioned on the spectrum of
Tm = QT

mQm ∈ R
k×k, a Hermitian-symmetric matrix that

determines the reconstruction performance.
4) Error Analysis: As shown in (4), the available measure-

ments ym are assumed to be perturbed by an i.i.d. Gaussian
noise with zero mean and variance σ 2 in each dimension. The
estimation error c− ĉ has zero mean and covariance

�m = σ 2T−1
m . (8)

The η-confidence ellipsoid of the estimation error, that is, the
minimum volume ellipsoid that contains c− ĉ with probability
η, is given by

ωα =
{

z|zT�−1
m z ≤ α

}
(9)

where α = F−1
χ2

k
(η) and Fχ2

k
is the cumulative distribution

function of a χ -squared random variable with k degrees of
freedom. The volume of the η-confidence ellipsoid can be a
scalar measure on the quality of estimation error as follows:

vol(ωα) = (απ)k/2

	
(

k
2+1

) det
(
�1/2

m

)
(10)

where 	 is the Gamma function. In practice, the log form is
always adopted as

log vol(ωα) = β −
(

1

2

)
log det(Tm) (11)

where β is a constant that depends only on σ , k, and η.
The log volume of the confidence ellipsoid identifies a quan-
titative measure of how informative the collection of m
measurements is.

5) Objective Function F: A subset of m out of n candi-
date sensors should be selected to minimize the log volume of
confidence ellipsoid. This can be transformed to the following
optimization problem:

maximize
Pm

F(Pm) = log det(Tm) = log det
(
�TPT

mPm�
)

(12)

where the spatial projection matrix Pm is the optimization
variable, and we interpret log det(Tm) as −∞ if Tm is singular.

TABLE I
SENSOR PLACEMENT CONFIGURATION

B. Formulation of Markov Decision Process

The basic concepts of MDP and RL are introduced in
Appendix B. In the sensor placement configuration of the
PDE system (1), the projection matrix Pm indicates that m
sensors are to be selected among the candidate n measure-
ments. Mathematically, Pm can be considered as the first m
rows of an n-dimensional permutation matrix. The positions
i1, . . . , ij−1, ij, ij+1, . . . , im of element 1 in the rows of Pm

encodes the m sensors to be used. Hence, Pm can be modeled
as the state s of the RL configuration directly. An action a
is defined as the change of only one sensor to be activated,
which refers to a transformation matrix � ∈ R

n×n such that
P′m = Pm�, where P′m is the successor state s′ with element
1 in positions i1, . . . , ij−1, i′j, ij+1, . . . , im(ij �= i′j). After exe-
cuting action a in state s, the system transits to state s′ with
projection matrix P′m, and the one-step reward r(s, a) is set as
the corresponding objective function F(P′m). The value func-
tion, vπ (s), is the expected cumulative return when starting in
s under policy π thereafter, defined as

vπ (s) = Eπ

[ ∞∑
τ=0

γ τ rt+τ+1|st = s

]
(13)

where Eπ [ · ] denotes the expected value under the circum-
stance that the agent follows the given policy π . The value
function indicates how good it is for the agent to be in a
given state. With these preliminaries, the sensor placement
configuration can be formulated as an MDP shown in Table I.

C. RL-Based Sensor Placement Method

Based on the proposed spatial objective function and the for-
mulated MDP, an integrated RL algorithm for optimal sensor
placement is shown in Algorithm 1.

The learning parameters are initialized in lines 1–5. The
learning process consists of several episodes, and each episode
consists of no more than tmax time steps in lines 6–22. At
the beginning of each episode, the state of sensor locations is
initialized arbitrarily in order to explore the entire state space.
The episode is terminated early if the state st at time t results
in an objective function F(st) that is greater than the recorded
maximum Fmax. This process aims at intensively searching
the potential optimum within the local region of this learning
episode.

For a state s, there are m(n−m) available actions a ∈ A(s)
and corresponding successor states s′ ∈ S ′ with value func-
tions v(s′). In order to explore the set of possible actions and
exploit experiences from the reinforcement returns, the actions
are selected using ε-greedy strategy for a tradeoff between
exploration and exploitation. The greedy part of the action
selection strategy will guide the sensors to be located in states
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Algorithm 1: RL-Based Optimization for Sensor
Locations

1 Initialize state value functions v(s) (∀s ∈ S), and the
policy π :pπ (st, at) arbitrarily

2 Initialize the recorded maximum F : Fmax ← 0
3 Initialize the number of recorded episodes: N ← 0
4 Nmax ← maximum episodes for indicating convergence
5 tmax ← maximum time steps in each episode
6 while N ≤ Nmax do
7 while t ≤ tmax and F(st) ≤ Fmax do
8 Initialize t = 1, st

9 Select action at using the ε−greedy strategy
10 Take at, observe next state st+1 and reward rt+1
11 Temporal difference error

δt+1 = rt+1 + γ v(st+1)− v(st)

12 Value iteration v(st)← v(st)+ αtδt+1
13 st ← st+1
14 F(st)← spatial objective function in (12)
15 if F(st) > Fmax then
16 Fmax ← F(st), s∗ ← st

17 N ← 0
18 else
19 N ← N + 1
20 end
21 end
22 end
23 Obtain optimal sensor locations: P∗m ← s∗

with greater objective functions, that is, exploitation. The other
part of the random selection is applied for diversely search-
ing over the whole space and avoiding the local optimum,
i.e., exploration. Finally, if the recorded Fmax has not been
promoted for a preset number of consecutive episodes, Nmax,
then the state converges to the optimum s∗ with maximal
objective function F∗ according to the convergence analysis in
Remark 1, and the learning process stops. The optimal sensor
placement P∗m is obtained for providing the best performance
of spatiotemporal modeling using the limited set of sensors in
line 23.

Remark 1 (Convergence of Algorithm 1): Consider an RL-
based sensor placement agent in a nondeterministic MDP, for
every state s, the value vt(s) will converge to the optimal
state value function v∗(s) if the following constraints are
satisfied [38], [39].

1) The rewards in the whole learning process satisfy
(∀s, a)|ra

s | ≤ R, where R is a finite constant value.
2) A discount factor γ ∈ [0, 1) is adopted.
3) During the learning process, the non-negative learning

rate αt satisfies

lim
T→∞

T∑
t=1

αt = ∞, lim
T→∞

T∑
t=1

α2
t <∞. (14)

IV. SIMULATION EXPERIMENTS

To test the proposed RL-based method, a simulated catalytic
rod and a practical snap curing oven system are studied. Let

c(z, t), z = 1, . . . , k denote the real temporal modes of the
reduced-order space in (4), and ĉ(z, t) be the modes estimated
with the limited number of sensors in (7). Let y(x, t) denote
the measured output of the system, and ŷ(x, t) be the predicted
output with the selected sensors. The performance indices for
evaluating the quality of sensor locations are defined as the
rooted mean square errors (RMSEs)

RMSE
(
c, ĉ

) =
(∫

�
(
c(z, t)− ĉ(z, t)

)2
dz/

∫
dz��t

) 1
2

RMSE
(
y, ŷ

) =
(∫

�
(
y(x, t)− ŷ(x, t)

)2
dx/

∫
dx��t

) 1
2

.

(15)

In our RL setting, the state s is the locations of the available
m sensors out of the n candidate measurements. The action a is
defined as the change of the location of only one sensor. After
executing a in s, the system transits to new locations s′, and the
objective function F in (12) regarding s′ is defined as the one
step reward r(s, a). In order to demonstrate the performance
of sensor placement, the RL-based optimization method is
compared to three classic methods: 1) convex optimization;
2) greedy method; and 3) GA. The parameter settings for the
one-step value iteration are as follows: learning rate α = 0.1
and discount factor γ = 0.95. For each group of experi-
ments, ε-greedy exploration strategy is applied to investigate
the performance of the proposed algorithm. The exploration
rate ε is set as 1.0 at the very beginning and then gradu-
ally decreases to 0. All the algorithms are implemented with
Python 3.6 running on Mac OS X with Intel Core i5-7360
2.30 GHz and 8-GB RAM, and all the experimental results
presented in this paper are averaged over 100 runs.

A. Benchmark of Catalytic Rod

In this benchmark, a classical transport-reaction process
in chemical industry [54] is considered, where the temper-
ature distribution on a catalytic rod is modeled from a limited
number of sensors. The mathematical model of the following
parabolic PDE can be used to describe the rod temperature
evolution over time and space as:

∂y(x, t)

∂t
= ∂2y(x, t)

∂x2
+ βT

(
e−

γ
1+y − e−γ

)

+ βu
(
bT(x)u(t)− y(x, t)

)
(16)

subject to the Dirichlet boundary and initial conditions

y(0, t) = 0, y(π, t) = 0, y(x, 0) = y0(x)

where y(x, t) is the rod temperature, u(t) is the temporal input
function, b(x) is the spatial distribution of input actuators, βT

is the heat of reaction, βu is the heat transfer coefficient, and
γ denotes the activation energy. The process parameters are
usually set as

βT = 50, βu = 2, γ = 4.

There are four input actuators u(t) = [u1(t), . . . , u4(t)]T ,
ui(t) = 1.1+ 5 sin(t/10+ i/10), (i = 1, . . . , 4), with the spa-
tial distribution function b(x) = [b1(x), . . . , b4(x)]T , bi(x) =
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Fig. 1. Snapshots produced by direct numerical simulation of the nonlinear
transport-reaction process.

Fig. 2. First three BFs chosen in accordance with the energy criterion.

H(x− (i− 1)π/4)− H(x− iπ/4), (i = 1, . . . , 4), and H(·) is
the standard Heaviside function. The noise-free streaming data
generated from (16) is sampled at time interval �t = 0.01.
The initial condition y0(x) is set to be the steady state with
the input ui(t) = 1.1, i = 1, . . . , 4.

The simulated snapshots used are depicted in Fig. 1. Each
snapshot contains the temperature values from 16 equispaced
positions sampled in the spatial domain at a given time.
The first three dominant BFs which are capable of captur-
ing more than 99% of the dominant dynamics of the system
are depicted in Fig. 2. Based on the reduced-order subspace
of the system, the sensor locations with a limited number m
is optimized according to the derived spatial objective func-
tion using the RL-based method. The optimal sensor locations
obtained by the proposed method are depicted in Fig. 3 for
different sets of available measurements. Fig. 4 presents the
maximum reward and the average reward acquired in sequen-
tial learning episodes for different sets of available sensors. It
can be observed that the received rewards grow rapidly at the
first learning episodes, indicating an intensified and efficient
learning process of the RL-based sensor placement method.

In the next stage, three techniques are considered for com-
parison to the proposed method: 1) sensor selection via convex
optimization [26]; 2) greedy method [30]; and 3) GA [36].
As an example, Fig. 5 shows the sensor arrangements for

Fig. 3. Optimal sensor locations obtained by the RL-based method with a
different number (m = 6, 8, and10) of available sensors.

TABLE II
RMSES WITH LIMITED SENSORS SELECTED BY DIFFERENT METHODS.

BEST PERFORMANCES ARE MARKED IN BOLD

eight available sensors attained by convex optimization, greedy
method, GA, and RL, respectively. Table II presents the
RMSEs in (15) with reduced sensor locations using the four
methods. It can be observed that, compared to the other three
methods, the optimal sensor locations obtained by the RL-
based method provide a closer approximation to the original
system.

In order to evaluate the estimation properties of the tested
methods at a dynamic level, observation experiments are car-
ried out with m = 8 available sensors selected by the four
methods. The output of the system, in these experiments,
is perturbed by the Gaussian white noise with zero mean
and standard deviation σ(xi) = Ad(xi)nd, where Ad(xi) =
(max(y(xi, t))−min(y(xi, t)))/3, (i = 1, . . . , n) and nd = 0.05.
The evolution of the dominant three true c-states and the esti-
mated ones is presented in Fig. 6. The corresponding RMSEs
with reduced sensor locations using the four methods are
shown in Table III. The capability of observing the domi-
nant modes of the distributed process at a dynamic level is
highly dependent on the type of sensor placement. The RL-
based sensor placement method presents a superior observer
performance compared to the alternative sensor selection
methods like convex optimization, greedy method, or GA.

Further, we investigate a series of experiments with a dif-
ferent number of candidate n and available m sensors. The
configuration is shown in Table IV. The size of the state-action
space varies by an order of magnitude as the number of sensors
increases. The performances of the GA- and RL-based place-
ment methods are observed. For a fair comparison, the size of
the population in one generation of GA is set to the same as
the number of maximum steps in one episode of RL. Fig. 7
shows the obtained (normalized) recorded maximum objection
function Fmax regarding learning episodes/generations under
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(a) (b) (c)

Fig. 4. RL performances for optimizing sensor locations with different sets of available sensors. (a) m = 6. (b) m = 8. (c) m = 10.

Fig. 5. Optimal sensor arrangements for m = 8 available sensors attained
by convex optimization, greedy method, GA, and RL, respectively.

TABLE III
RMSES WITH LIMITED SENSORS SELECTED BY DIFFERENT METHODS

AT A DYNAMIC LEVEL. BEST PERFORMANCES ARE MARKED IN BOLD

TABLE IV
CONFIGURATION OF THE SENSOR PLACEMENT PROBLEM UNDER

DIFFERENT SCALES AND THE CORRESPONDING RUNNING

TIME OF THE GA- AND RL-BASED METHODS

different scales of the state-action space. It can be observed
that the RL-based method executes a faster and more efficient
learning process toward the optimal sensor locations compared
to the GA-based method. The corresponding running time is
given in Table IV, showing that the RL-based method has a
comparable computational cost with the GA-based method.

B. Application to Snap Curing Oven System

In this section, the proposed RL-based sensor placement
algorithm is validated using a real-world implementation—a
curing thermal process in the snap oven [55]. As shown in

(a)

(b)

(c)

Fig. 6. Evolution of the real and the estimated temporal modes under temper-
ature output noise with eight sensors selected by different methods. (a) First
c-mode. (b) Second c-mode. (c) Third c-mode.

Fig. 8, the heaters embedded in the heating block are used to
heat the integrated circuit on the lead frame. Nitrogen is filled
inside the oven to avoid oxidation. The temperature in the
oven changes over time and space due to the complex thermal
process inside including radiation, convection, and conduction.
As shown in Fig. 9, the snap oven has four heaters (h1–h4)
for heating, and 16 candidate thermocouple sensors (s1–s16)
on the lead frame used to measure the temperature. For better
modeling and control, the limited number of sensors should
be carefully selected to reflect the complex spatiotemporal
dynamics of the system.
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(a) (b) (c) (d)

Fig. 7. Performances of the obtained maximum objective function of the GA- and RL-based sensor placement methods under different scales. (a) n =12,
m =6. (b) n =16, m =8. (c) n =20, m =10. (d) n =24, m =12.

(a) (b)

Fig. 8. Snap curing oven system. Curing (a) thermal system and (b) oven.

Fig. 9. Available sensor locations for modeling.

Fig. 10. Temperature distribution at time 1000 in the curing oven.

In this experiment, 3000 temperature data are collected
with a sampling interval of �t = 10 s. As an example, the
real snapshots at time 1000 are depicted in Fig. 10. Based
on the dominant 2-D spatial BFs as shown in Fig. 11, the
acquired optimal placement for eight available sensors using
the proposed RL-based method and the corresponding learn-
ing performance are shown in Figs. 12 and 13, respectively.

(a) (b) (c)

Fig. 11. First three 2-D BFs of the snap curing oven system. (a) ϕ1(x1, x2).
(b) ϕ2(x1, x2). (c) ϕ3(x1, x2).

Fig. 12. Optimal placement for eight available sensors obtained by the
RL-based method.

Fig. 13. Learning performance for placing eight available sensors by the
RL-based method.

It can be observed that the RL-based method can obtain
a near-optimal maximal reward with only a few learning
episodes.

The RL-based sensor placement method is further com-
pared to convex optimization, greedy method, and GA with
a different number of available sensors (m = 4, 6, 8, 10,

and 12) at both static and dynamic levels. At the dynamic level,
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TABLE V
RMSE(c, ĉ) AT BOTH STATIC AND DYNAMIC LEVELS WITH LIMITED

SENSORS SELECTED BY DIFFERENT METHODS IN THE SNAP CURING

OVEN. BEST PERFORMANCES ARE MARKED IN BOLD

the output data of the snap curing oven is perturbed by the
Gaussian white noise with mean zero and standard deviation
as described in the above simulated experiment. The RMSEs
between the real c-modes and the estimated ones using these
four methods are shown in Table V. It is confirmed that, in
the real oven case, the RL-based method also provides a better
sensor placement scheme for reconstructing and observing the
system’s dynamics.

V. CONCLUSION

In this paper, we presented an integrated RL-based optimal
sensor placement method for spatiotemporal modeling of
DPSs. The sensor placement problem for unknown DPSs is
mathematically formulated as an MDP with the proposed
spatial objective function. The promising properties of RL
enable the sensor placement algorithm to be implemented in
an online, model-free, and fully incremental way. The exper-
imental results on a simulated catalytic rod and a practical
snap curing oven system have demonstrated that the proposed
method provides better sensor locations for reconstructing
and observing the system’s dynamics. Under the same cir-
cumstances, the RL-based method executes a more efficient
learning process and has a comparable computational cost
compared to the GA-based method. Our future work will focus
on more efficient (deep) RL algorithms for more complex
sensor placement problems.

APPENDIX A
TIME-SPACE SEPARATION

For time-space separation of the PDE system (1) [54],
[56]–[58], KLD [52] is widely utilized for calculating the
empirical eigenfunctions and deriving accurate reduced-order
approximations. In practice, assume the system output variable
{y(xi, t)}n,l

i=1,t=1, denoted as snapshot, is uniformly sampled in
both the time and space coordinates, where x ∈ � is the
spatial variable, � is the spatial domain, and t is the time
variable. Define the norm, inner product, and ensemble aver-
age as ||f (x)|| = (f (x), f (x))1/2, (f (x), g(x)) = ∫

�
f (x)g(x)dx,

and 〈f (x, t)〉 = (1/l)
∑l

t=1 f (x, t). Inspired by the Fourier the-
ory, the spatiotemporal variable y(x, t) can be truncated into
a dominant number k of orthonormal spatial BFs {ϕi(x)}ki=1
with corresponding temporal coefficients {ci(t)}ki=1

yk(x, t) =
k∑

i=1

ϕi(x)ci(t) (17)

where yk(x, t) denotes the kth-order approximation. The tem-
poral coefficients can be computed from

ci(t) = (ϕi(x), y(x, t)), i = 1, . . . , k. (18)

Time-space separation aims to compute the most domi-
nant spatial BFs {ϕi(x)}ki=1 among the spatiotemporal output
{y(xi, t)}n,l

i=1,t=1 using KLD. Finding the typical {ϕi(x)}ki=1
can be achieved by minimizing the corresponding Lagrangian
function

J = 〈||y(x, t)− yk(x, t)||2〉 +
k∑

i=1

λi((ϕi, ϕi)− 1) (19)

corresponding to constraints (ϕi, ϕi) = 1, ϕi ∈ L2(�), i =
1, . . . , k, the necessary condition of the solution can be
expressed as∫

�

R(x, ζ )ϕi(ζ )dζ = λiϕi(x), (ϕi, ϕi) = 1, i = 1, . . . , n

(20)

where R(x, ζ ) = 〈y(x, t)y(ζ, t)〉 is the spatial two-point
correlation function.

The solution of (20) can be achieved by a computationally
efficient method of snapshots [52]. The eigenfunction (spatial
BFs) ϕi(x) can be transformed into a linear combination of
the snapshots as

ϕi(x) =
l∑

t=1

γity(x, t). (21)

After substituting (21) into (20), the necessary condition is
computed as

∫
�

1

l

l∑
t=1

y(x, t)y(ζ, t)
l∑

k=1

γiky(ζ, k)dζ = λi

l∑
t=1

γity(x, t).

(22)

Then, this eigenvalue problem is transformed to a simplified
form of an l× l matrix eigen-decomposition problem as

Cγ i = λiγ i (23)

where γ i = [γi1, . . . , γil]T is the ith eigenvector, and

Ctk = 1

l

∫
�

y(ζ, t)y(ζ, k)dζ (24)

is defined as the temporal two-point correlation function. The
solution of problem (23) yields the eigenvectors γ 1, . . . , γ l,
which in turn can be used for constructing the eigenfunctions
ϕ1(x), . . . , ϕl(x) in (21). Because the matrix C is symmet-
ric and positive semidefinite, the derived eigenfunctions are
orthogonal. The dominant k spatial BFs {ϕi(x)}ki=1 are selected
in the descending order of the magnitude of the corresponding
eigenvalues, which can capture more than 99% of the system
energy according to

Ek =
∑k

i=1 λi∑l
j=1 λj

. (25)
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APPENDIX B
REINFORCEMENT LEARNING

Standard RL theories are based on the concept of MDP. An
MDP is denoted as a tuple 〈S, A, R, P〉, where S is the state
space, A is the action space, R is the reward function, and P is
the state transition probability. The policy of MDP is defined as
a function π : S→ Pr(A), that is, a probability distribution in
the state-action space. The objective is to estimate the optimal
policy π∗ that satisfies

Jπ∗ = max
π

Jπ = max
π

Eπ

[ ∞∑
t=0

γ trt

]
(26)

where γ ∈ [0, 1) is the discount factor, rt is the reward at
time-step t, Eπ [ · ] stands for the expectation under policy π ,
and Jπ is the expected cumulative reward.

When the agent has no prior knowledge of the initially
unknown environment, TD learning (a widely used RL algo-
rithm) can achieve optimal policies from delayed rewards. At
a certain time step t, the agent observes the state st and, then,
chooses an action at according to ε-greedy strategy

p(s, a) =
{

1− ε + ε/Na, if a = arg maxai∈A(s),s′i∈S′ v
(
s′i
)

ε/Na, otherwise
(27)

where Na = |A(s)| denotes the cardinality of the action set.
After executing action at, the agent gets into the next state
st+1 and receives a reward rt+1 (a reflection of how good that
action is in a short-term sense). Then, the agent will choose
the next action at+1 according to the best known knowledge.

The TD error is defined by

δt+1 = rt+1 + γ v(st+1)− v(st) (28)

where rt+1 is the reinforcement signal received at time t + 1
and γ is the discount factor used to determine the present
value of future rewards. The iteration rule of value functions
is given by

v(st)← v(st)+ αtδt+1 (29)

where αt is the learning rate. After the algorithm converges,
the optimal value functions under an optimal policy satisfy the
Bellman equation

v∗(s) = max
a∈A(s)

∑
s′

p
(
s′|s, a

)[
r
(
s, a, s′

)+ γ v∗
(
s′
)]

. (30)

More details about TD learning can be found in [38].
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