
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022 4003

Lifelong Incremental Reinforcement Learning
With Online Bayesian Inference

Zhi Wang , Member, IEEE, Chunlin Chen , Member, IEEE, and Daoyi Dong , Senior Member, IEEE

Abstract— A central capability of a long-lived reinforcement
learning (RL) agent is to incrementally adapt its behavior as its
environment changes and to incrementally build upon previous
experiences to facilitate future learning in real-world scenarios.
In this article, we propose lifelong incremental reinforcement
learning (LLIRL), a new incremental algorithm for efficient
lifelong adaptation to dynamic environments. We develop and
maintain a library that contains an infinite mixture of parame-
terized environment models, which is equivalent to clustering
environment parameters in a latent space. The prior distribution
over the mixture is formulated as a Chinese restaurant process
(CRP), which incrementally instantiates new environment mod-
els without any external information to signal environmental
changes in advance. During lifelong learning, we employ the
expectation–maximization (EM) algorithm with online Bayesian
inference to update the mixture in a fully incremental manner. In
EM, the E-step involves estimating the posterior expectation of
environment-to-cluster assignments, whereas the M-step updates
the environment parameters for future learning. This method
allows for all environment models to be adapted as necessary,
with new models instantiated for environmental changes and
old models retrieved when previously seen environments are
encountered again. Simulation experiments demonstrate that
LLIRL outperforms relevant existing methods and enables effec-
tive incremental adaptation to various dynamic environments for
lifelong learning.

Index Terms— Bayesian inference, Chinese restaurant
process (CRP), expectation–maximization (EM), incremental
reinforcement learning (RL), lifelong learning.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1] is a kind of algo-
rithms that permits an autonomous active agent to adapt

its behavior in a trial-and-error manner to maximize cumu-
lative reward during interaction with an initially unknown
environment. Classical algorithms, such as dynamic program-
ming [2], Monte Carlo methods [3], and temporal-difference

Manuscript received 12 May 2020; revised 24 August 2020 and 7 December
2020; accepted 26 January 2021. Date of publication 11 February 2021;
date of current version 4 August 2022. This work was supported in part
by the National Natural Science Foundation of China under Grant 62006111,
Grant 62073160, and Grant 61828303; in part by the Australian Research
Council’s Discovery Projects Funding Scheme under Project DP190101566;
in part by the Natural Science Foundation of Jiangsu Province of China under
Grant BK20200330; and in part by the Fundamental Research Funds for the
Central Universities of China under Grant XJ2020003201. (Corresponding
author: Chunlin Chen.)

Zhi Wang and Chunlin Chen are with the Department of Control
and Systems Engineering, School of Management and Engineering, Nan-
jing University, Nanjing 210093, China (e-mail: zhiwang@nju.edu.cn;
clchen@nju.edu.cn).

Daoyi Dong is with the School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT 2600, Australia (e-mail:
daoyidong@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3055499.

Digital Object Identifier 10.1109/TNNLS.2021.3055499

learning [4], have been successfully applied to Markov deci-
sion processes (MDPs) with discrete state-action spaces, even
when the reward feedback is sparse or delayed [5], [6]. To
overcome the “curse of dimensionality,” function approxima-
tion techniques liberate RL from traditional tabular algorithms
that usually converge slowly with unaffordable computational
costs, making RL applicable for MDPs with large or con-
tinuous state-action spaces [7], [8]. The recent partnership
with deep learning, referred to as deep reinforcement learn-
ing (DRL), makes RL being capable of solving extremely
high-dimensional problems ranging from video games [9], [10]
and board games [11] to robotic control tasks [12], [13].

RL methods generally operate in a “stationary” regime: all
training is performed in advance, producing policies to make
decisions at test time in settings that approximately match
those seen during training. However, the environment is often
dynamic in real-world scenarios where the reward or state
transition functions or even the state-action spaces may change
over time. Sudden changes and dynamic uncertainties [14],
such as shifts in the terrain for robot navigation [15] or
variation in coexisting agents for multiagent systems [16], can
cause conventional learning algorithms to fail. Since intelligent
agents are becoming ubiquitous with human interactions,
an increasing number of scenarios require new learning mech-
anisms that are amenable for fast adaptation to environments
that may drift or change from their nominal situations [17].
A central ability of a long-lived autonomous RL agent is to
incrementally adapt its behavior as the environment changes
around it, continuously exploiting previous knowledge to
facilitate its lifelong learning procedure. Unfortunately, these
requirements can be problematic for many established RL
algorithms.

Recently, incremental RL [18], [19] emerges as an effective
alternative for fast adaptation to dynamic environments.1 In
this setting, the dynamic environment can be considered as a
sequence of stationary tasks on a certain timescale where each
task corresponds to the specific environmental characteristics
during the associated time period. As shown in Fig. 1(a),
the previously learned knowledge (e.g., value functions or
policies) is utilized for initialization of the new learning
process whenever the environment changes, and subsequently,
it is adjusted to a new one that fits in the new environment in
an incremental manner. Such incremental adaptation is crucial

1Moreover, incremental learning has been widely investigated to cope
with learning tasks with an incoming stream of data or an ever-changing
environment [20], in various areas including supervised learning [21], machine
vision [22], evolutionary computation [23], human–robot interaction [24], and
system modeling [25].

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0304-3965
https://orcid.org/0000-0003-3929-4707
https://orcid.org/0000-0002-7425-3559

4004 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Fig. 1. Comparison between (a) incremental RL and (b) lifelong incremental
RL. Mt ∈ M, t = 1, 2, . . . denotes the specific MDP/environment at time
period t , D denotes the dynamic environment over the MDP space M, and
θ denote learning parameters.

for intelligent systems operating in the real world, where
changing factors and unexpected perturbations are the norms.
For the sake of computational efficiency, Wang et al. [18], [19]
directly inherited the knowledge from the last time period and
discarded all experiences prior to that, thus avoiding repeatedly
accessing or processing a large set of previously seen environ-
ments. On the other side, it is supposed to be more rational
to remember all these experiences as an evolving library
during the “lifelong” learning process, as shown in Fig. 1(b).
To achieve artificial general intelligence, RL agents should
constantly build more complex skills and scaffold their knowl-
edge about the world without forgetting what has already
been learned [26]. At a new time period, the learning agent
can consult the stored library first and either retrieve the
most similar experience (previously seen environment) from
the library or expand a new experience (encountering a new
environment) into the library.

The goal of this article is to develop a new incremental RL
algorithm for lifelong adaptation to dynamic environments. We
focus on the way how we selectively retrieve prior experience
from the lifelong learning library to help the current learning
process most. This work is orthogonal and complementary
to the previous one in [18] and [19] where the emphasis
is put on how the learned knowledge is fast adapted to a
new environment after simply inheriting it from the last time
period.

We develop and maintain a library that contains a potentially
infinite number of pairwise parameters. One is the canon-
ical “learning parameters” for learning the behavior policy,
such as the policy network in direct policy search [12]. The

other, denoted as “environment parameters,” is to parameterize
the environment using an arbitrary function approximator
such as a neural network, which can be instantiated as
the reward or state transition function. To handle dynamic
environment distributions over time, we introduce an infinite
mixture of Bayesian models over environment parameters,
which is equivalent to clustering environment parameters in
a latent space. The prior distribution over the mixture is
formulated as a Chinese restaurant process (CRP), where new
environment models are sequentially instantiated as needed.
By using latent variables in a probabilistic mixture model
to indicate the environment-to-cluster assignments, we can
directly detect similarities between environment models based
on the environment-specific likelihood, without requiring envi-
ronment delineations to be specified in advance. During
lifelong learning, we employ the expectation–maximization
(EM) algorithm with online Bayesian inference to update the
mixture of environment models in a fully incremental manner.
The E-step in EM corresponds to computing the posterior
inference of environment probabilities, whereas the M-step is
amenable for updating environment parameters incrementally
for future learning. This allows for all environment models
to be adapted as necessary, with new models instantiated
for environmental changes and old models retrieved when
previously seen environments are encountered again.

The primary contribution of this article is a lifelong
incremental reinforcement learning (LLIRL) algorithm that
employs EM, in conjunction with a CRP prior on the envi-
ronment distribution, to learn a mixture of environment mod-
els to handle dynamic environments over time. The infinite
mixture enables incremental assignments of soft environment-
to-cluster probabilities, allowing for environment specializa-
tion to emerge naturally without any external information to
signal environmental changes in advance. Experiments are
conducted on a suite of continuous control tasks ranging from
robot navigation to locomotion in various dynamic environ-
ments. Our results verify that LLIRL instantiates new environ-
ment models as necessary, correctly clusters previously seen
environments in a latent space, and incrementally builds upon
previous experiences to facilitate adaptation to challenging
dynamic environments during lifelong learning.

The remainder of this article is organized as follows.
Section II introduces the preliminaries, including RL algo-
rithms and related work. In Section III, we first present the
problem statement and the overview of LLIRL, followed by
specific implementations in detail and the final integrated algo-
rithm. Experiments on several robot navigation and Mujoco
locomotion tasks are conducted in Section IV. Section V
presents concluding remarks.

II. PRELIMINARIES AND RELATED WORK

A. Reinforcement Learning

RL is commonly studied based on the MDP framework.
An MDP is a tuple �S,A,T ,R, γ �, where S is the set of
states, A is the set of actions, T : S × A × S → [0, 1] is
the state transition probability, R : S ×A→ R is the reward
function, and γ is the discount factor. A policy is defined as

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LLIRL WITH ONLINE BAYESIAN INFERENCE 4005

a function π : S ×A→ [0, 1], a probability distribution that
maps actions to states, and

�
a∈A π(a|s) = 1,∀s ∈ S. The

goal of RL is to find an optimal policy π∗ that maximizes the
expected long-term return J (π)

J (π) = Eρ∼π(ρ)[r(ρ)] = Eρ∼π(ρ)

� ∞�
i=0

γ iri

�
(1)

where ρ = (s0, a0, s1, a1, . . .) is the learning episode, π(ρ) =
p(s0)�

∞
i=0π(ai |si)p(si+1|si , ai), and ri is the instant reward

received when executing the action ai in the state si .
The policy can be represented as a parameterized approxi-

mation πθ using a function h(·|θ). In DRL [12], h is a deep
neural network (DNN) and θ denote its weights. The Gibbs
distribution is commonly used for a discrete action space

πθ (i |s) = exp(hi (s|θ))�
j∈A(s) exp(h j (s|θ))

(2)

and the Gaussian distribution is usually used for a continuous
action space

πθ (a|s) = 1√
2πσ

exp

�
− 1

σ 2
(h(s|θ)− a)2

�
. (3)

To measure the quality of the policy π , the direct objective
function can be equivalently rewritten as

J (θ) = Eρ∼πθ (ρ)[r(ρ)] =
�

ρ

πθ (ρ)r(ρ) dρ (4)

where r(ρ) =�∞
i=0 γ i ri is the return of episode ρ .

The objective function is commonly maximized by ascend-
ing the parameters following the gradient of the policy with
respect to the expected return. By the policy gradient theo-
rem [1], the basic policy gradient method employs the direct
gradient of the objective

∇θ J (θ) = Eρ∼πθ (ρ)

	∇θ log πθ (ρ)r(ρ)

=
�

ρ

∇θ log πθ (ρ)r(ρ)πθ (ρ) dρ

≈
m�

i=1

∇θ log πθ (ρ
i)r(ρ i) (5)

where (ρ 1, . . . , ρm) is a batch of learning episodes sampled
from policy πθ . Hereafter, an ascent step is taken in the
direction of the estimated gradient as θ ← θ +α∇θ J (θ). This
process continues until θ converge [12], [27].

B. Related Work

Incremental learning is related to online learning [28] and
continual learning [29], which also consider a sequential
setting where tasks are revealed one after another. One of the
most representative algorithms for online learning is to follow
the leader (FTL) [30], which consolidates all the data from
previous tasks into a single large data set and fits a single
model to it. Online learning offers an appealing theoretical
framework [31] that aims at zero-shot generalization without
any task-specific adaptation, while our lifelong incremental
learning considers how past experiences can facilitate the
learning adaptation to a new task. On the other side, continual

learning systems aim to learn a sequence of tasks one by
one such that the learning of each new task will not forget
how to perform previously trained tasks [32], i.e., mitigating
catastrophic forgetting [33]. In contrast, our lifelong incremen-
tal learning exploits past experiences in a sequential manner
to learn good priors, while it has the ability to rapidly adapt
to the current learning task at hand.

Our work is also related to Bayesian policy reuse (BPR) [17]
that employs the Bayesian inference to select prior knowledge
from a preestablished library. Deep BPR+ [16] extended BPR
with DRL techniques to handle nonstationary opponents in
multiagent RL. Yang et al. [34] incorporated the theory of
mind into BPR to detect nonstationary and more sophisticated
opponents and to compute the best response accordingly.
BPR methods prefer to quickly select a near-optimal policy
from a collection of prelearned behaviors that have been
acquired offline, while we emphasize optimal adaptation to the
ever-changing environment and synchronously incorporates
a mixture of Bayesian models to update the library incre-
mentally. Moreover, BPR methods measure task similarities
based on the received reward signal, whereas our method is
based on the approximated reward or state transition function
that exhibits better representation capabilities than the reward
signal itself.

Developing smart agents that are able to work under
dynamic conditions has attracted increasing attention in the
RL community. A particularly related class of methods in the
context of dynamic environments is transfer RL [35], which
reuses the knowledge from a set of related source domains to
help the target learning task. One feasible approach is to use
domain randomization to train a robust policy that can work
under a large variety of environments [36]–[39]. This approach
relies on task-specific knowledge to schedule the range of
randomized domains, while it is usually challenging to balance
the range of domains. In contrast, our method provides a
flexible structure in which the scale of the mixture model
is determined by the observed dynamic environment itself,
without any requirement on the range of task distributions.

Instead of learning invariance to environment dynamics,
an alternative solution is to train an adaptive policy that is
able to identify environmental dynamics and apply actions
appropriate for different dynamics [40]. Chen et al. [41]
used a representation of hardware variations as an additional
input to the policy function for each discrete instance of the
environment. Peng et al. [42] and Andrychowicz et al. [43]
learned adaptive behavior and implicit system identification
simultaneously by embedding the summary of past states and
actions into a memory-augmented recurrent policy. Adaptive
policies can be learned exclusively from the assumed source
tasks and applied directly to unknown environments without
any additional training. However, policies trained over a source
distribution may not generalize well when the discrepancy
between the target environment and the source is too large.
In contrast, our method incrementally updates and expands a
mixture model to handle dynamic environments on the fly,
regardless of such discrepancy.

Another line of research that tackles the learning problem
in dynamic environments is meta learning [44]. A recent

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

4006 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

trend in meta learning is to learn a base model from which
adaptation can be quickly performed to new tasks sam-
pled from a fixed distribution. One such approach is the
model-agnostic meta learning (MAML) [45], [46], a simple
yet elegant meta-learning framework that has achieved state-
of-the-art results in a number of settings [47], [48]. In general,
existing approaches need to repeatedly access and process a
potentially large distribution of training tasks to yield a reliable
knowledge base for target environments that are supposed to
be consistent with the training distribution. In contrast, our
method concentrates on the ability to rapidly learn and adapt
in a sequential manner by maintaining a library from scratch,
without any structural assumptions or prior knowledge on the
dynamics of the ever-changing environment.

III. LIFELONG INCREMENTAL

REINFORCEMENT LEARNING

In this section, we first formulate the lifelong incremental
learning problem in the context of dynamic environments.
Then, we introduce the overview of LLIRL that enables the
agent to incrementally accumulate knowledge over a lifetime
of experience and rapidly adapt to dynamic environments by
building upon prior knowledge. Next, we explain in detail the
infinite mixture model that formulates the prior distribution on
an incrementally increasing number of environment clusters
and the EM algorithm with online Bayesian inference to
update the mixture of environment models in a fully incremen-
tal manner. Finally, we present the integrated LLIRL algorithm
based on the above implementations.

A. Problem Formulation

We consider the dynamic environment as a sequence of
stationary tasks on a certain timescale where each task cor-
responds to the specific environment characteristics at the
associated time period. Assume that there is a space of MDPs,
M, and an infinite sequence of environments, D, over time
in M. An RL agent interacts with the dynamic environment
D = [M1, . . . , Mt−1, Mt , . . .], where each Mt ∈ M denotes
the specific MDP/environment that is stationary at the t th time
period. The environment changes over time, resulting in a
nonstationary environment distribution, and the identity of the
current environment Mt is unknown to the agent. We assume
in this article that the environment changes only in the reward
and state transition functions but keeps the same state and
action spaces. The goal of lifelong incremental learning is
to build upon the prior knowledge accumulated along with
previous time periods 1, 2, . . . , t − 1, to facilitate optimizing
the learning parameters that can achieve maximum return at
the current environment Mt as

θ∗t = arg max
θ∈Rd

JMt (θ). (6)

In an incremental manner, the agent learns optimal parameters
(θ∗t+1, θ

∗
t+2, . . .) over its lifetime, in conjunction with updating

the prior knowledge for future learning.

B. Method Overview

A straightforward approach for leveraging prior knowledge
is to store every learning instantiation encountered in the

past, while it suffers from scalability problems as the number
of instantiated environments quickly becomes large. Hence,
we start with a more rational idea that parameterizes environ-
ment instantiations and clusters previously seen environments
in a latent space, reducing redundancy within the stored
library.

We develop and maintain a library that contains a potentially
infinite number of pairwise parameters (θ (∞),ϑ (∞)) during
the lifelong learning process in a dynamic environment: θ for
learning the behavior policy (e.g., policy network) and ϑ for
parameterizing the environment (e.g., reward or state transition
function approximated by a neural network). At time period t ,
suppose that the accumulated knowledge along with previous
time periods 1, 2, . . . , t − 1 is represented by the library
containing L sets of pairwise parameters {θ (l)

t ,ϑ
(l)
t }Ll=1, where

θ (l) and ϑ (l) denote the learning and environment parameters
corresponding to a specific environment cluster M (l) ∈ M,
respectively. The agent should first estimate the identity of the
current environment Mt (which is unknown) as

zt = l∗, l∗ ∈ {1, . . . , L, L + 1} (7)

where zt is a categorical latent variable indicating the cluster
assignment of the environment-specific parameters ϑ t . l∗ ≤
L indicates retrieving the most similar model of previously
seen environment in the library, and l∗ = L + 1 indicates
the incremental expansion of a new environment cluster into
the library. After the environment identification, the agent
will initialize learning parameters of the current environment
from the library as θ t ← θ

(l∗)
t , which is considered to help

the current learning process most. The learning parameters
are further optimized through interacting with the current
environment and in turn are used to update the library for
future learning as θ

(l∗)
t+1 ← θ∗t .

To handle dynamic environments, we introduce an infinite
mixture over the environment-specific parameters ϑ , which
is equivalent to clustering the environment parameters in a
latent space. The prior distribution P(ϑ) is formulated via
the CRP, which will be discussed in Section III-D. Since
the number of environment clusters is unknown, we begin
with one environment cluster at the first time period, where
L = 1, and randomly initialize the pairwise parameters
(θ

(1)
1 ,ϑ

(1)
1) in the library. From here, we continuously update

the environment-specific parameters to model the true dynamic
environment and incrementally instantiate new environment
clusters as needed via the CRP. At each time period, to identify
the unknown current environment Mt , we will use the intro-
duced mixture to infer the prior and posterior distributions
over environment clusters, using these distributions to make
predictions and in turn using them to update the environment
parameters. Thus, the lifelong incremental learning method
can adapt the environment parameters at each time period
according to the inferred distributions over an increasing
number of environment clusters.

Let x and y denote the input and output with respect to
the environment model, respectively, and (X t , Y t) be the con-
structed input–output data set at time period t . During lifelong
learning, we employ the EM algorithm to update the Bayesian
mixture of environment models in a fully incremental manner

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LLIRL WITH ONLINE BAYESIAN INFERENCE 4007

without storing previous samples, which will be described in
detail in Section III-E. The E-step in EM involves inferring
the latent environment-to-cluster probabilities as

P(ϑ t |Y t , X t) ∝ pϑ t (Y t |X t)P(ϑ t) (8)

and the M-step optimizes the expected log-likelihood as

L(ϑ t) = EMt∼P(ϑ t |X t ,Y t)[log pϑ t (Y t |X t)]. (9)

C. Environment Parameterization

Clustering environments as a mixture in a latent space
requires a model that can represent the underlying environment
and needs to train the parameterized model in a supervised
way. Naturally, we can use the reward function

r = g1
ϑ(s, a) (10)

or the state transition function

s� = g2
ϑ(s, a) (11)

or the concatenation of the two functions

[r, s�] = g3
ϑ(s, a) (12)

to parameterize the environment. In this way, x can be the
concatenation of the state and action, and y can be the instant
reward or next state or their concatenation. The input–output
sample (x, y) used to train and update environment models
can be constructed from the episodic transition (s, a, r, s�) in
a canonical RL process.

To obtain a slightly large batch of data for each incremental
update, we set the input to be the concatenation of h previous
states and actions, given by xi = [si−h+1, ai−h+1, . . . , si , ai],
and the output to be the corresponding rewards yi =
[ri−h+1, . . . , ri] or next states yi = [si−h+2, . . . , si+1] or
their concatenation yi = [ri−h+1, si−h+2, . . . , ri , si+1]. Since
individual transitions at high frequency can be very noisy,
using the consecutive h transitions helps damp out the updates.
At time period t , let pϑ t (Y t |X t) represent the predictive
likelihood of the environment model ϑ t on episodic samples
(X t , Y t) =�H

i=h(xt
i , yt

i), where H is the time horizon of the
learning episode. The predictive model represents each sample
as an independent Gaussian N (yt

i; gϑ t (xt
i), σ

2) such that

pϑ t (Y t |X t) = �H
i=hN (yt

i; gϑ t (xt
i), σ

2) (13)

where σ 2 is a constant.

D. Infinite Mixture for Dynamic Environments

In the regime of dynamic environments, it is important to
add mixture components incrementally to enable specialization
of different environment models that constitute the lifelong
learning process. We employ an infinite/nonparametric Dirich-
let process mixture model (DPMM) [49] to formulate the
prior distribution over an increasing number of environment
clusters, providing a flexible structure in which the number of
environment clusters is determined by the observed dynamic
environments.

The instantiation of the DPMM that is well suitable for
incremental learning can be described via the CRP [50], a dis-
tribution over mixture components that embodies the assumed
prior distribution over cluster structures [51], [52]. The CRP
can be described by a sequence of customers sitting down
at the tables of a Chinese restaurant, where customers sitting
at the same table belong to the same cluster. Each customer
sits down alone at a new table with probability proportional
to a concentration parameter or sits at a previously occupied
table with probability proportional to the number of customers
already sitting there.

In our case with the CRP formulation, the environment
identities are inferred in a sequential manner, while the prior
distribution over environment clusters allows a new mixture
component to be instantiated with some probability, which is
essential for the incremental learning implementation. For a
sequence of environments [M1, . . . , Mt−1, Mt , . . .], the first
environment is assigned to the first cluster. At time period
t , the prior distribution, i.e., the expectation of environment-
to-cluster assignments, for each cluster M (l) is given by

P(ϑ (l)
t) = P(zt = l) =

⎧⎪⎪⎨
⎪⎪⎩

n(l)

t − 1+ ζ
, l ≤ L

ζ

t − 1+ ζ
, l = L + 1

(14)

where n(l) denotes the number of encountered environments
already occupying the cluster M (l) and ζ is a fixed positive
concentration hyperparameter that controls the instantiation of
new clusters. Considering all previous time periods, the prior
probability over all environment clusters becomes

P
�
ϑ

(l)
t |ϑ1:t−1, ζ

� =
⎧⎪⎪⎨
⎪⎪⎩

�t−1
t �=1 P(ϑ

(l)
t �)

t − 1+ ζ
, l ≤ L

ζ

t − 1+ ζ
, l = L + 1

(15)

where L indicates the number of nonempty clusters and
l = L + 1 indicates the potential spawning of a new cluster.
This nonparametric formation circumvents the necessity for
a priori fixed number of clusters, enabling the mixture to
unboundedly adapt its complexity along with the evolving
complexity of the observed dynamic environment. During
lifelong learning, new clusters can be naturally instantiated
as needed in an incremental manner, without any external
information to signal environmental changes in advance.

Remark 1: At one extreme when ζ = 0, there is only one
environment cluster all the time. Our method degenerates to
the incremental learning setting in [18] that directly inherits
the prior knowledge from the last time period and discards all
experiences prior to that. When the concentration hyperpara-
meter ζ gets larger, the CRP tends to produce more clusters,
which is likely to provide more precise clustering results at the
cost of more computational efforts. At the other extreme of
ζ = ∞, our method always instantiates a new cluster for each
environment, resulting in a one-to-one environment-to-cluster
mapping. The learning adaptation performance will degrade
poorly since, at each time period, we need to learn from scratch
without utilizing any prior knowledge.

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

4008 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

E. EM With Online Bayesian Inference

To enable lifelong learning in dynamic environments,
we employ the EM algorithm with online Bayesian inference
to update the mixture of environment models in a fully
incremental manner. In our case, the E-step in EM involves
estimating the posterior expectation of environment-to-cluster
assignments at the current time period P(ϑ t |X t , Y t), whereas
the M-step involves updating environment parameters ϑ t to
the new ϑ t+1 incrementally for future learning.

We first estimate the expectations over all L + 1 clus-
ters (including the potentially new one) considering the
environment distribution. The posterior distribution of each
environment-to-cluster assignment P(ϑ (l)

t |X t , Y t) can be writ-
ten as

P
�
ϑ

(l)
t |X t , Y t

�
∝ p

ϑ
(l)
t
(Y t |X t)P

�
ϑ

(l)
t

�
. (16)

Combining the prior probability in (15) and the predictive
likelihood in (13), the posterior probability distribution over
environment clusters can be derived as

P
�
ϑ

(l)
t |X t , Y t

�
∝

⎧⎪⎨
⎪⎩

p
ϑ

(l)
t
(Y t |X t)

t−1�
t �=1

P
�
ϑ

(l)
t �

�
, l ≤ L

p
ϑ

(l)
t
(Y t |X t)ζ, l = L + 1.

(17)

With the estimated posterior P(ϑ
(l)
t |X t , Y t), we perform

the M-step that optimizes the expected log-likelihood in (9)
based on the inferred environment probabilities. Suppose that
each environment model starts from the prior parameters ϑ1,
the value of ϑ t after taking one gradient update at each time
period can be derived by

ϑ
(l)
t+1=ϑ

(l)
1 −β

t�
t �=1

P
�
ϑ

(l)
t � |X t � , Y t �

�∇ϑ
(l)
t �

log pϑ
(l)
t �
(Y t � |X t �) (18)

where β is the learning rate for the EM algorithm. As stated in
Section III-A, with our incremental learning setting, the mix-
ture of environment models has already been updated for all
previous time periods 1, 2, . . . , t −1. We can approximate the
update in (18) by incrementally updating previous parameters
on samples of the current environment as

ϑ
(l)
t+1=ϑ

(l)
t −β P

�
ϑ

(l)
t |X t , Y t

�∇ϑ
(l)
t

log pϑ
(l)
t
(Y t |X t) ∀l. (19)

This procedure circumvents the necessity for storing previ-
ously seen samples, yielding a fully streaming, incremental
learning algorithm with online Bayesian inference. To fully
implement the EM algorithm, we need to repeatedly alternate
the E- and M-steps to converge, rolling back the previous
gradient update at each iteration [52].

F. Integrated Algorithm

With the above implementations, the complete LLIRL algo-
rithm is summarized as in Algorithm 1. At the first time period
t = 1, the environment mixture is initialized to contain only
one entry L = 1, and we randomly initialize the pairwise
parameters (θ

(1)
1 ,ϑ

(1)
1) in Line 1. From here, the incremen-

tal learning process at each time period t is described as
follows.

We first initialize the pairwise parameters (θ (L+1)
t ,ϑ (L+1)

t)
that correspond to the new potential environment cluster in
Line 3. Since the identity of the current environment Mt is
unknown, we employ a uniform behavior policy to collect a
few episodic transitions TE =�

i (si , ai , ri , s �i) that can mostly
explore the state-action space of the environment in Line 4.
From TE , we can construct the input–output samples (X t , Y t)
in Line 5, which will be used to infer the environment identity
and to update the environment models. With the samples
collected in the current environment, we can compute the
predictive likelihood over environment clusters (including the
potentially new cluster) pϑ t (Y t |X t) in Line 6. Combining this
estimated likelihood in (13) and the CRP prior probability
in (15), we can infer the posterior probabilities over the
mixture of environment models P(ϑ t |Y t , X t) in Line 7.

The CRP prior assigns a probability of adding a new cluster
into the environment mixture, while the Bayesian posterior
determines whether to expand the new cluster into the library
or not. If the posterior probability of the new potential cluster
is greater than those of the L nonempty existing clusters as
in Line 8, then this new cluster is incrementally expanded
into the library as in Lines 9 and 10. Next, we perform
the EM algorithm with online Bayesian inference to update
the mixture of environment models incrementally. The E-step
recalculates the posterior distribution over environment models
in Line 13. The M-step improves the expected log-likelihood
in (9) based on the inferred posterior distribution, updating
environment parameters ϑ via gradient descent in Line 14.
After alternating the E- and M-steps to converge, we can obtain
new environment parameters that are updated incrementally
for future learning in Line 16. Based on the updated envi-
ronment parameters, the identity of the current environment
is obtained by computing a maximum a posteriori (MAP)
estimate on the predictive likelihood as Mt = M (l∗) in Line 17,
i.e., selecting the environment model that best fits the current
samples (X t , Y t). LLIRL does not refine cluster assignments
of previously observed environments, circumventing the need
for multiple expensive passes over the whole library. Instead,
we incrementally infer environment parameters and instanti-
ate new clusters during episodic training based on unbiased
estimates of log-likelihood gradients.

After the identification of the current environment, we ini-
tialize its learning parameters from those associated with the
selected environment cluster as θ t ← θ

(l∗)
t in Line 18, which

is supposed to help the current learning process most.2 Finally,
the agent continues to optimize the policy through interacting
with the current environment in Line 19 and then update the
corresponding learning parameters in the library after the cur-
rent learning process converges in Line 20. Correspondingly,
the entire process of LLIRL is illustrated by a flow diagram,
as shown in Fig. 2.

2When a new cluster is created (i.e., l∗ = L+1), we can initialize its policy
parameters from one of the L preexisting clusters. Empirically, the policy
initialized from another environment may achieve better performance than a
randomly initialized one because the previous optimum of policy parameters
has learned some of feature representations (e.g., nodes in a neural network)
of the state-action space [19].

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LLIRL WITH ONLINE BAYESIAN INFERENCE 4009

Algorithm 1 LLIRL With Online Bayesian Inference
Input: Dynamic environment D = [M1, . . . , Mt−1, Mt , . . .]
Output: Optimal learning parameters θ∗t for each time period during lifelong learning

1 Initialize L = 1, t = 1, and (θ (1)
1 ,ϑ

(1)
1)

2 for each time period t do
3 Initialize (θ

(L+1)
t ,ϑ

(L+1)
t) // for the new potential environment cluster

4 Collect a few transitions TE =�
i (si , ai , ri , s �i) // sampled from a uniform behavior policy

5 Construct (X t , Y t) from TE // samples with respect to the environment models
6 Calculate pϑ

(l)
t
(Y t |X t) using (13), ∀l ≤ L + 1 // predictive likelihood of environment models on samples

7 Infer P(ϑ
(l)
t |X t , Y t) using (16), ∀l ≤ L + 1 // posterior of environment-to-cluster assignments

8 if P(ϑ (L+1)
t |X t , Y t) > P(ϑ (l)

t |X t , Y t),∀l ≤ L then
9 Add (θ

(L+1)
t ,ϑ

(L+1)
t) to (θ t ,ϑ t) thereafter // incremental expansion of the new environment cluster

10 L ← L + 1
11 end
12 while not converging do
13 Re-calculate P(ϑ (l)

t |X t , Y t) using (16) with updated ϑ
(l)
t , ∀l ≤ L // E-step, update the posterior

14 Adapt ϑ
(l)
t using (19) with updated P(ϑ

(l)
t |X t , Y t), ∀l ≤ L // M-step, update environment parameters

15 end
16 ϑ

(l)
t+1 ← ϑ

(l)
t , ∀l ≤ L // obtain new environment parameters incrementally for future learning

17 l∗ = arg maxl≤L pϑ
(l)
t+1

(Y t |X t) // obtain the identity of the current environment

18 θ t ← θ
(l∗)
t // initialize the learning parameters from the most likely environment cluster

19 Update θ t , obtain θ∗t // learn in the current environment until it converges
20 θ

(l)
t+1 ← θ

(l)
t ,∀l ≤ L; θ

(l∗)
t+1 ← θ∗t // obtain new learning parameters incrementally for future learning

21 end

Fig. 2. Flow diagram of LLIRL with online Bayesian inference.

IV. SIMULATION EXPERIMENTS

We conduct simulation experiments on continuous control
tasks ranging from 2-D navigation to MuJoCo robot loco-
motion. Using agents in these tasks, we design a number of
challenging learning problems that involve infinite (multiple)
changes in the underlying environment distribution, where

lifelong incremental learning is critical. Through these experi-
ments, we aim to build problem settings that are representative
of the types of dynamic environments that RL agents may
encounter in real-world scenarios. The overarching questions
that we aim to study from our experiments include the
following.

Q1 Can LLIRL handle various dynamic environments where
the reward or state transition function may change over
the agent’s lifetime?

Q2 Does LLIRL successfully build upon previous experi-
ences to facilitate lifelong learning adaptation to these
dynamic environments?

Q3 How does the number of instantiated environment clus-
ters in the latent space affect the performance?

Q4 Can LLIRL incrementally instantiate new environment
models and correctly cluster these seen environments in
a latent space, without any external information to signal
environmental changes in advance?

A. Experimental Settings

In Sections IV-B and IV-C, we present the results and
insightful analysis of our findings. In the experiments, we eval-
uate LLIRL in comparison to four baseline methods.

1) CA: It continuously adapts a single policy model during
lifelong learning. This is representative of commonly
used dynamic evaluation methods [46], [53].

2) Robust: It takes the most recent observation as the
input (i.e., πrobust : s �→ a) and leverages domain
randomization to train a robust policy that is supposed to

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

4010 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

work for all environments [36], [38], while the current
environmental dynamics cannot be identified from its
input.

3) Adaptive: It represents the policy as a long short-term
memory (LSTM) network that takes a history of obser-
vations as the input (i.e., πadapt : [st−l , . . . , st] �→
a) [42], [43]. This allows the policy to implicitly identify
the current environment and adaptively choose actions
according to the identified environment.

4) MAML: It trains a meta policy by exploiting the depen-
dence between consecutive tasks such that it can solve
new learning tasks using only a small number of training
samples [45], [47].

We use the policy search algorithm with nonlinear function
approximation to handle continuous control tasks [12]. Follow-
ing the benchmarks [12], we adopt a similar model architecture
for all investigated domains. The trained policy of LLIRL is
approximated by a feedforward neural network with two 200-
unit hidden layers separated by ReLU nonlinearity. The policy
network is parameterized by weights θ and maps each state to
the mean of a Gaussian distribution. The environment model is
also approximated by a feedforward neural network with two
200-unit hidden layers separated by ReLU nonlinearity, which
is parameterized by weights ϑ and maps each state-action
pair to the reward in (10) or the next state in (11) or their
concatenation in (12).

For fair comparison to our method, the network architecture
of CA, Robust, and MAML is set as the same as that of
LLIRL. For Adaptive, we feed a history of five observations to
a recurrent policy network that consists of a 200-unit embed-
ding layer and a 200-unit LSTM layer separated by ReLU
nonlinearities. The universal policies of Robust, Adaptive,
and MAML are trained over a variety of environments that
are randomly sampled from a fixed distribution. Furthermore,
we continue to train these universal policies after transferring
to the new task whenever the environment changes, using
the same amount of samples that LLIRL consumes in each
environment. We refer to this additional training step as
adaptation at execution time. In contrast, LLIRL directly
adapts to dynamic environments on the fly without any exter-
nal information to signal environmental changes in advance,
avoiding access to a large distribution of training environments
and releasing the dependence on structural assumptions of
environmental dynamics.

For each report unit (a particular algorithm running on a
particular task), we define two performance metrics. One is the
average return over a batch of learning episodes in each policy
iteration, which is defined as (1/m)

�m
i=1 ri (πθ), where m is

the batch size and ri (πθ) is the received return for executing
the associated policy. The other is the average return over all
policy iterations, which is defined as (1/m J)

�J
j

�m
i=1 r j

i (πθ),
where J is the number of training iterations. The former is
plotted in figures and the latter is presented in tables. To
constitute a lifelong learning process, we sequentially change
the environment for T = 50 times for each task, resulting
in a dynamic environment D = [M1, . . . , MT]. We record
the performance of all tested methods for every environment
instance Mt (1 ≤ t ≤ T) and report the statistical results

over these T learning adaptation periods to demonstrate the
performance of lifelong learning in dynamic environments.
All the algorithms are implemented with Python 3.5 run-
ning on Ubuntu 16 with 48 Intel Xeon E5-2650 2.20GHz
CPU processors, 193-GB RAM, and an NVIDIA Tesla GPU
of 32-GB memory. Our code is available online.3

B. 2-D Navigation

We first implement LLIRL on a set of navigation tasks
where a point agent must move to a goal position within a unit
square. The state is the current observation of the 2-D position,
and the action corresponds to the 2-D velocity commands that
are clipped to be in the range of [−0.1, 0.1]. The reward is the
negative squared distance to the goal minus a small control
cost that is proportional to the action’s scale. Each learning
episode always starts from a given point and terminates when
the agent is within 0.01 of the goal or at the horizon of H =
100. The gradient updates are computed using vanilla policy
gradient (REINFORCE) [12]. The hyperparameters are set as:
learning rates α = 0.02 for policy learning and β = 0.001
for environment model updating, discount factor γ = 0.99,
batch size m = 16, and time horizon h = 4 for environment
parameterization.

1) Representative Types of Dynamic Environments: For Q1,
we simulate three representative types of dynamic environ-
ments, as shown in Fig. 3.

1) Type I: As shown in Fig. 3(a), the dynamic environment
is created by changing the goal position within the
unit square randomly. Corresponding to the statement
in Section III-A, the environment changes in the reward
function in this case. To implement the mixture of
environment models, we use the reward function as
in (10) to parameterize environments.

2) Type II: It is a modified version of the benchmark puddle
world environment presented in [54] and [55]. As shown
in Fig. 3(b), the agent should drive to the goal while
avoiding three circular puddles with different sizes. The
agent will bounce to its previous position when hitting
on the puddles. The dynamic environment is created by
moving the puddles within the unit square randomly,
i.e., the environment changes in the state transition
function, and we use the state transition function as
in (11) to parameterize environments.

3) Type III: As a combination of the above two types
shown in Fig. 3(c), this kind of dynamic environment
is created by changing both the goal and puddles within
the unit square randomly. The environment changes in
both the reward and state transition functions, which is
considered to be more complex than the other two types.
Corresponding to Section III-C, we use the concatena-
tion of the reward and state transition functions as in (12)
to parameterize this type of complex environments.

2) Results of Lifelong Learning Adaptation: To address
Q1 and Q2, we present primary results of LLIRL and all
baselines implemented on the three types of dynamic environ-
ments. Fig. 4 shows the average return per policy iteration, and

3https://github.com/HeyuanMingong/llirl

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LLIRL WITH ONLINE BAYESIAN INFERENCE 4011

Fig. 3. Examples of three types of dynamic environments in the 2-D
navigation tasks. Ṡ is the start point and Ġ is the goal point. Puddles are
shown in gray. (a) Type I: the goal changes. (b) Type II: the puddles change.
(c) Type III: both the goal and the puddles change.

Table I reports the numerical results in terms of average return
over 100 iterations. For LLIRL, the numbers of instantiated
clusters are L = 6, L = 4, and L = 5 for the three
types of navigation tasks. Obviously, CA obtains the slowest
learning adaptation to dynamic environments since it adopts
the simplest adaptation mechanism. Robust and Adaptive
achieve better performance than CA, which is supposed to
benefit from leveraging the domain randomization technique.
MAML performs the best among all baselines, exhibiting its
ability to embed across-task knowledge into the meta policy
and acquire task-specific knowledge quickly at execution time.

From Fig. 4, it can be observed that LLIRL achieves
significant jumpstart performance [56] compared to all base-
lines. Due to correctly clustering encountered environments
in a latent space, LLIRL is able to retrieve the most
similar experience from the library to help the current

TABLE I

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER ALL
ITERATIONS OF ALL TESTED METHODS IMPLEMENTED IN THE

2-D NAVIGATION TASKS. HERE AND IN SIMILAR TABLES BELOW,
THE MEAN ACROSS T = 50 CONSECUTIVE ENVIRONMENTAL

CHANGES IS PRESENTED, AND THE CONFIDENCE
INTERVALS ARE CORRESPONDING STANDARD

ERRORS. THE BEST PERFORMANCE IS

MARKED IN BOLDFACE

learning process most. Furthermore, LLIRL achieves much
faster learning adaptation to all dynamic environments com-
pared to the four baselines. For instance, in the type I dynamic
environment, it takes only 20 policy iterations for LLIRL to
obtain near-optimal asymptotic performance, while it takes
more than 100 iterations for all baselines. The performance
gap in terms of average return per iteration is more pronounced
for smaller amounts of computation, which is supposed to
benefit from the distinct acceleration of correctly retrieving
the most similar environment cluster from the library. From
Table I, it can be obtained that LLIRL receives significantly
larger average returns over all training iterations than all
baselines. In addition, it can be observed from the statistical
results that LLIRL mostly obtains smaller confidence intervals
and standard errors than the baselines. It indicates that LLIRL
can provide more stable learning adaptation to these dynamic
environments. In summary, consistent with the statement in
Section III-A, it is verified that LLIRL is capable of handling
dynamic environments where the reward or state transition
function may change over time, providing significantly better
learning adaptation to them.

3) Influence of the Number of Clusters: To address Q3,
i.e., identifying the relationship between the number of instan-
tiated environment clusters and the performance of LLIRL,
we vary hyperparameters of the CRP prior and the EM
algorithm to obtain a series of implementations with different
numbers of instantiated environment clusters. The performance
of various LLIRL implementations with different numbers
of clusters in the three types of navigation tasks is shown
in Fig. 5 and Table II. At one extreme, LLIRL with only one
cluster degenerates to the CA baseline. It can be observed that
adding only one cluster (LLIRL with two clusters) is already
capable of improving the learning adaptation to a large extent
compared to the CA baseline. Imagine an extreme situation
where the dynamic environment consists of two opposed tasks
that are consecutively switched. Initializing the policy from the
last time period probably provides little improvement for the
current learning process, while initializing from the second-last
time period tends to benefit a lot. In this case, maintaining two
clusters of knowledge instead of one will significantly enhance
learning adaptation to dynamic environments.

In the beginning, adding several clusters will generally help
improve the learning adaptation performance since a library

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

4012 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Fig. 4. Average return per iteration of all tested methods in the 2-D navigation tasks. L is the number of instantiated environment clusters by LLIRL. Here
and in similar figures below, the mean of average return per iteration across T = 50 consecutive environmental changes is plotted as the bold line with 95%
bootstrapped confidence intervals of the mean (shaded). (a) Type I, L = 6. (b) Type II, L = 4. (c) Type III, L = 5.

Fig. 5. Average return per iteration of LLIRL implementations with different numbers of instantiated environment clusters in the navigation tasks. (a) Type
I. (b) Type II. (c) Type III.

TABLE II

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER ALL

ITERATIONS OF LLIRL IMPLEMENTATIONS WITH DIFFERENT
NUMBERS OF INSTANTIATED ENVIRONMENT CLUSTERS

IN THE NAVIGATION TASKS

with more clusters of knowledge is likely to provide more
appropriate policy initialization for the learning process at
each time period. However, as the number of instantiated
environment clusters increases, the learning performance is
hardly improved and may even be degraded further. At the
other extreme, LLIRL will assign each environment to a dis-
tinct cluster, resulting in a one-to-one environment-to-cluster
mapping. In this case, LLIRL degenerates to the setting
that requires learning from scratch whenever the environment
changes, thus leading to poor scalability in constantly changing
environments. In practice, a moderate number of instantiated
environment clusters (e.g., 4–6) are sufficient to obtain appeal-
ing performance in these navigation tasks.

4) Incremental Cluster Instantiation and Clustering: To
answer Q4, deep insights into the mixture of environment
models are required for observing and comprehending the
lifelong learning process. We employ the type I navigation
task to serve as a proof of principle and a means to gain an
intuition of the Bayesian mixture through visualization. The
environment is characterized by the reward function that is
highly correlated with the goal position. Environments with
adjacent goal positions are more similar to each other and
tend to belong to the same cluster. Hence, we use the goal
position in the 2-D coordinate as a visualization to reveal the
relationship among environments.

As shown in Fig. 6, each data point within the unit square
stands for a goal position that corresponds to the environment
at a specific time period, and environments belonging to
different clusters are represented by data points with different
shapes and colors. In this implementation, it can be observed
that the six environment clusters are incrementally instantiated
at time periods t = 1, 2, 3, 5, 16, 32, respectively. Eventually,
the changing environments over all T = 50 time periods are
effectively clustered as six components in a latent space, which
is visualized in the unit square as shown in Fig. 6(e). More
results of LLIRL implementations with different numbers of
instantiated environment clusters are presented in Fig. 7. It
further verifies that LLIRL is capable of clustering previously
seen environments in a latent space where similar environ-
ments are close to each other and tend to belong to the

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LLIRL WITH ONLINE BAYESIAN INFERENCE 4013

Fig. 6. LLIRL implementation visualized in the 2-D coordinate in type I navigation task. (a) Initial three clusters are instantiated at the initial three time
periods. (b)–(d) Fourth-sixth clusters are instantiated at time periods t = 5, 16, 32, respectively. (e) All 50 environments are assigned to six clusters effectively.

Fig. 7. LLIRL implementations with different numbers of instantiated environment clusters visualized in the 2-D coordinate in type I navigation task. (a) Two
clusters. (b) Three clusters. (c) Four clusters. (d) Five clusters.

same cluster. At each time period, the current environment is
assigned to an existing cluster or instantiated as a new cluster
according to the predictive likelihood of the data samples on
these environment clusters. Therefore, no external information
is needed to signal environmental changes in advance, which
is crucial for lifelong learning in real-world scenarios.

C. MuJoCo Locomotion

The above results verify that LLIRL is well suited to
the 2-D navigation tasks, significantly facilitating lifelong
learning adaption to various dynamic environments. The next
set of experiments is to study whether we can observe similar
benefits to lifelong learning when LLIRL is applied to more
complex DRL problems. It is necessary to test LLIRL on
a well-known problem of considerable difficulty, such as
the robotic locomotion control system [57], [58]. Therefore,
we also investigate three high-dimensional locomotion tasks
with the MuJoCo physics engine [59], aiming at testing
whether LLIRL can enable efficient lifelong learning adap-
tation at the scale of DNNs on much more sophisticated
domains.

Fig. 8 shows three representative locomotion tasks with
growing dimensions of state-action spaces. These continuous
control tasks require a one-legged hopper/planar cheetah/
3-D quadruped ant robot to run at a particular velocity in
the positive x-direction. The reward is an alive bonus plus
a regular part that is negatively correlated with the absolute
value between the current velocity of the agent and a goal.
The lifelong dynamic environment is created by consecutively

Fig. 8. Representative MuJoCo locomotion tasks with growing dimensions
of state-action spaces including (a) Hopper, |S| = 11, |A| = 3, and r =
1 − 4 · |vx − vg |, (b) HalfCheetah, |S| = 20, |A| = 6, and r = −|vx − vg |,
and (c) Ant, |S| = 111, |A| = 8, and r = 1 − 3 · |vx − vg |. vx is the agent’s
velocity in the positive x-direction and vg is the goal velocity.

changing the goal velocity at random within a preset range:
[0.0, 1.0] for Hopper, [0.0, 2.0] for HalfCheetah, and [0.0, 0.5]
for Ant. Each learning episode always starts from a given
physical status of the agent and terminates when the agent
falls down at the horizon of H = 100. We employ proximal
policy optimization (PPO) [60] as the base algorithm to handle
these challenging locomotion tasks. To reduce the variance of
optimization, we subtract the standard linear feature baseline
from the empirical return and fit the baseline separately at
each policy iteration [12]. Since the environment changes in
the reward function, we use the reward function as in (10) to
parameterize environments.

With the above settings, we present the results of LLIRL
and baseline methods implemented on locomotion domains.
For LLIRL, four environment clusters are instantiated for all

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

4014 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Fig. 9. Average return per iteration of all tested methods in locomotion tasks. L = 4 environment clusters are instantiated for LLIRL in all tasks. (a) Hopper.
(b) HalfCheetah. (c) Ant.

TABLE III

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER
ALL POLICY ITERATIONS OF ALL TESTED METHODS

IMPLEMENTED ON LOCOMOTION TASKS

Fig. 10. LLIRL implementations with four instantiated environment clusters
in the locomotion tasks. (a) Hopper. (b) HalfCheetah. (c) Ant.

domains. Both LLIRL and baseline methods initialize the
policy network in a specific manner and transfer the policy
initialization as an inductive bias to help the current learning
process. The performance improvement comes from the help
of each specific kind of inductive bias, which is empirically

evaluated by conducted experiments with some predefined per-
formance metrics. Following the state-of-the-art benchmarks
in the RL community [10], [12], [45], [51], we employ the
learning curve (i.e., the received return regarding learning
iterations) and the average return over all learning iterations as
the performance metrics to evaluate all tested methods. Fig. 9
shows the average return per policy iteration of all tested
methods, and Table III shows the corresponding numerical
results in terms of average return over all policy iterations.

It can be observed that LLIRL always exhibits signifi-
cantly faster and more stable learning adaptation than all
baselines, especially in the initial policy iterations. Actually,
LLIRL is already capable of obtaining near-optimal asymp-
totic performance at the beginning of the learning process
whenever the environment changes. In contrast, it takes much
more computational efforts for baseline methods to achieve
performance comparable with that of LLIRL. For instance,
in HalfCheetah and Ant domains, LLIRL only needs approx-
imately 50 learning iterations to receive near-optimal returns,
while it can cost more than 500 iterations for baseline methods.
More specifically, for obtaining a return of −20/80 in the
HalfCheetah/Ant domain, LLIRL needs only 13/24 s, while all
baselines need more than 260/600 s. This phenomenon reveals
that LLIRL successfully builds upon previous experiences
to facilitate learning adaptation in dynamic environments to
a large extent. CA initializes the policy network directly
from the last time period, which has no guaranteed similarity
with the current environment. Robust/Adaptive/MAML lever-
age domain randomization/implicit system identification/meta
learning to train a universal policy as the initialization for
all environments. These three methods can be considered as
transferring the same averaged inductive bias to all environ-
ments, other than retrieving the most helpful inductive bias for
each specific environment. In contrast, LLIRL automatically
detects the identity of the current environment under the
introduced online Bayesian inference framework. Using the
recognized identity, LLIRL retrieves the most similar experi-
ence (i.e., learning parameters θ) from the library, which is
supposed to maximally benefit the current learning process.
Therefore, LLIRL only needs to finetune the selected prior
knowledge with a small amount of computational resources,
being much more efficient for lifelong learning in dynamic
environments.

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LLIRL WITH ONLINE BAYESIAN INFERENCE 4015

Similar to the analysis in navigation tasks, we also illustrate
some deep insights to look into the Bayesian mixture in
locomotion domains. Apparently, the locomotion environment
is characterized by the reward function that is highly correlated
with the goal velocity. Environments with adjacent goal veloc-
ities are closer to each other and are more likely to belong
to the same cluster. Therefore, we use the goal velocity in
the 1-D coordinate to visualize and reveal the relationship
among environments. Fig. 10 shows the final clustering results
of LLIRL implementations with four instantiated environment
clusters in the locomotion tasks. It is once again verified that
LLIRL can correctly cluster previously seen environments in
a latent space where environments with similar goal velocities
tend to belong to the same cluster. This part of clustering using
online Bayesian inference is the cornerstone for incrementally
building upon previous experiences to enhance lifelong learn-
ing adaptation in challenging dynamic environments.

V. CONCLUSION

In this article, we have presented a lifelong incremental
learning framework that adaptively modifies the RL agent’s
behavior as the environment changes over its lifetime, incre-
mentally building upon previous experiences to facilitate life-
long learning adaptation. LLIRL employs an EM algorithm,
in conjunction with a CRP prior, to maintain a mixture of
environment models to handle dynamic environments. During
lifelong learning, all environment models are adapted as neces-
sary in a fully incremental manner, with new models instanti-
ated for environmental changes and old models retrieved when
previously seen environments are encountered again. The
CRP prior over an infinite mixture enables new environment
models to be incrementally instantiated as needed without
any external information to signal environmental changes in
advance. Simulations experiments on a suite of continuous
control tasks have demonstrated that LLIRL is capable of
building upon previous experiences to facilitate lifelong learn-
ing adaptation to various dynamic environments. Our results
have shown that LLIRL can correctly cluster environments
in a latent space, retrieve previously seen environments,
and incrementally instantiate new environment clusters as
needed.

While we use policy gradient as our evaluation domain, our
method is general and can easily be implemented on other RL
architectures (e.g., deep Q-networks [9]). A potential direction
for future work would be to develop an efficient framework
that introduces only one set of parameters to train the pol-
icy and parameterize the environment concurrently. Another
insightful direction would be to conduct empirical investiga-
tion on systematically comparing traditional control methods
and recent RL methods in robot locomotion domains [57].

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[2] R. Bellman, “Dynamic programming,” Science, vol. 153, nos. 37–31,
pp. 34–37, 1966.

[3] G. Tesauro and G. R. Galperin, “On-line policy improvement using
Monte-Carlo search,” in Proc. Adv. Neural Inf. Process. Syst., 1997,
pp. 1068–1074.

[4] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[5] B. Luo, D. Liu, T. Huang, and D. Wang, “Model-free optimal tracking
control via critic-only Q-learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 10, pp. 2134–2144, Oct. 2016.

[6] J.-A. Li et al., “Quantum reinforcement learning during human decision-
making,” Nature Human Behaviour, vol. 4, no. 3, pp. 294–307,
Mar. 2020.

[7] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Trans. Neural Netw., vol. 18, no. 4,
pp. 973–992, Jul. 2007.

[8] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning-based auto-
matic exploration for navigation in unknown environment,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2064–2076, Jun. 2020.

[9] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, 2015.

[10] O. Vinyals et al., “Grandmaster level in StarCraft II using multi-
agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354,
Nov. 2019.

[11] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[12] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1329–1338.

[13] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged
robots,” Sci. Robot., vol. 4, no. 26, Jan. 2019, Art. no. eaau5872.

[14] H. Liang, G. Liu, H. Zhang, and T. Huang, “Neural-network-based
event-triggered adaptive control of nonaffine nonlinear multiagent sys-
tems with dynamic uncertainties,” IEEE Trans. Neural Netw. Learn.
Syst., pp. 1–12, 2020.

[15] M. A. Kareem Jaradat, M. Al-Rousan, and L. Quadan, “Reinforce-
ment based mobile robot navigation in dynamic environment,” Robot.
Comput.-Integr. Manuf., vol. 27, no. 1, pp. 135–149, Feb. 2011.

[16] Y. Zheng, Z. Meng, J. Hao, Z. Zhang, T. Yang, and C. Fan, “A deep
Bayesian policy reuse approach against non-stationary agents,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 962–972.

[17] B. Rosman, M. Hawasly, and S. Ramamoorthy, “Bayesian policy reuse,”
Mach. Learn., vol. 104, no. 1, pp. 99–127, Jul. 2016.

[18] Z. Wang, C. Chen, H.-X. Li, D. Dong, and T.-J. Tarn, “Incremental
reinforcement learning with prioritized sweeping for dynamic environ-
ments,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 2, pp. 621–632,
Apr. 2019.

[19] Z. Wang, H.-X. Li, and C. Chen, “Incremental reinforcement learning
in continuous spaces via policy relaxation and importance weighting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 1870–1883,
Jun. 2020.

[20] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream
data,” IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901–1914,
Dec. 2011.

[21] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[22] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” Int. J. Comput. Vis., vol. 77, nos. 1–3,
pp. 125–141, May 2008.

[23] S. Yang and X. Yao, “Population-based incremental learning with
associative memory for dynamic environments,” IEEE Trans. Evol.
Comput., vol. 12, no. 5, pp. 542–561, Oct. 2008.

[24] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incre-
mental learning of full body motion primitives and their sequencing
through human motion observation,” Int. J. Robot. Res., vol. 31, no. 3,
pp. 330–345, Mar. 2012.

[25] Z. Wang and H.-X. Li, “Incremental spatiotemporal learning for online
modeling of distributed parameter systems,” IEEE Trans. Syst., Man,
Cybern. Syst., vol. 49, no. 12, pp. 2612–2622, Dec. 2019.

[26] H. B. Ammar, R. Tutunov, and E. Eaton, “Safe policy search for lifelong
reinforcement learning with sublinear regret,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2361–2369.

[27] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[28] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 1920–1930.

[29] K. James et al., “Overcoming catastrophic forgetting in neural net-
works,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526,
Mar. 2017.

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

4016 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

[30] J. Hannan, “Approximation to Bayes risk in repeated play,” in Contri-
butions to Theory Games, vol. 3. Princeton, NJ, USA: Princeton Univ.
Press, 1957, pp. 97–139.

[31] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011.

[32] G. Zeng, Y. Chen, B. Cui, and S. Yu, “Continual learning of context-
dependent processing in neural networks,” Nature Mach. Intell., vol. 1,
no. 8, pp. 364–372, Aug. 2019.

[33] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[34] T. Yang, J. Hao, Z. Meng, C. Zhang, Y. Zheng, and Z. Zheng,
“Towards efficient detection and optimal response against sophisticated
opponents,” in Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019,
pp. 623–629.

[35] J. Pan, X. Wang, Y. Cheng, and Q. Yu, “Multisource transfer double
DQN based on actor learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2227–2238, Jun. 2018.

[36] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 23–30.

[37] F. Muratore, M. Gienger, and J. Peters, “Assessing transferabil-
ity from simulation to reality for reinforcement learning,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Nov. 8, 2019, doi:
10.1109/TPAMI.2019.2952353.

[38] M. Sheckells, G. Garimella, S. Mishra, and M. Kobilarov, “Using
data-driven domain randomization to transfer robust control policies to
mobile robots,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 3224–3230.

[39] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” IEEE Trans. Robot., vol. 36, no. 1, pp. 1–14,
Feb. 2020.

[40] W. Yu, C. K. Liu, and G. Turk, “Policy transfer with strategy optimiza-
tion,” in Proc. Int. Conf. Learn. Represent., 2019.

[41] T. Chen, A. Murali, and A. Gupta, “Hardware conditioned policies for
multi-robot transfer learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 9333–9344.

[42] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
Real transfer of robotic control with dynamics randomization,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1–8.

[43] M. Andrychowicz et al., “Learning dexterous in-hand manipulation,”
Int. J. Robot. Res., vol. 39, no. 1, pp. 3–20, 2020.

[44] M. Andrychowicz et al., “Learning to learn by gradient descent by
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3981–3989.

[45] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[46] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environ-
ments through meta-reinforcement learning,” in Proc. Int. Conf. Learn.
Represent., 2019.

[47] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and
P. Abbeel, “Continuous adaptation via meta-learning in nonstationary
and competitive environments,” in Proc. Int. Conf. Learn. Represent.,
2018.

[48] A. Antoniou, H. Edwards, and A. Storkey, “How to train your MAML,”
in Proc. Int. Conf. Learn. Represent., 2019.

[49] C. E. Antoniak, “Mixtures of Dirichlet processes with applications
to Bayesian nonparametric problems,” in Proc. Ann. Statist., 1974,
pp. 1152–1174.

[50] J. Pitman, “Combinatorial stochastic processes,” Dept. Statistics, UC
Berkeley, Berkeley, CA, USA, Tech. Rep. 621, 2002.

[51] Y. Yu, S.-Y. Chen, Q. Da, and Z.-H. Zhou, “Reusable reinforcement
learning via shallow trails,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2204–2215, Jun. 2018.

[52] A. Nagabandi, C. Finn, and S. Levine, “Deep online learning via meta-
learning: Continual adaptation for model-based RL,” in Proc. Int. Conf.
Learn. Represent., 2019.

[53] B. Krause, E. Kahembwe, I. Murray, and S. Renals, “Dynamic evaluation
of neural sequence models,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 2771–2780.

[54] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Proc. Adv. Neural Inf. Process.
Syst., 1996, pp. 1038–1044.

[55] A. Tirinzoni, A. Sessa, M. Pirotta, and M. Restelli, “Importance
weighted transfer of samples in reinforcement learning,” in Proc. Int.
Conf. Mach. Learn., vol. 80, 2018, pp. 4936–4945.

[56] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[57] T. Geijtenbeek, M. van de Panne, and A. F. van der Stappen, “Flexible
muscle-based locomotion for bipedal creatures,” ACM Trans. Graph.,
vol. 32, no. 6, pp. 1–11, Nov. 2013.

[58] Y. Pan, P. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-
time fuzzy control for robotic systems with user-defined perfor-
mance,” IEEE Trans. Fuzzy Syst., early access, Jun. 3, 2020, doi:
10.1109/TFUZZ.2020.2999746.

[59] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2012, pp. 5026–5033.

[60] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

Zhi Wang (Member, IEEE) received the B.E.
degree in automation from Nanjing University,
Nanjing, China, in 2015, and the Ph.D. degree in
machine learning from the Department of Systems
Engineering and Engineering Management, City
University of Hong Kong, Hong Kong, in 2019.

He had a visiting position at the University of
New South Wales, Canberra, ACT, Australia. He is
currently an Assistant Professor with the Depart-
ment of Control and Systems Engineering, Nanjing
University. His current research interests include

reinforcement learning, machine learning, and robotics.

Chunlin Chen (Member, IEEE) received the B.E.
degree in automatic control and the Ph.D. degree in
control science and engineering from the University
of Science and Technology of China, Hefei, China,
in 2001 and 2006, respectively.

He was with the Department of Chemistry,
Princeton University, Princeton, NJ, USA, from Sep-
tember 2012 to September 2013. He had visiting
positions at the University of New South Wales,
Canberra, ACT, Australia, and the City University of
Hong Kong, Hong Kong. He is currently a Professor

and the Head of the Department of Control and Systems Engineering, School
of Management and Engineering, Nanjing University, Nanjing, China. His
current research interests include machine learning, intelligent control, and
quantum control.

Dr. Chen serves as the Chair for the Technical Committee on Quantum
Cybernetics, IEEE Systems, Man and Cybernetics Society.

Daoyi Dong (Senior Member, IEEE) received the
B.E. degree and the Ph.D. degree in engineering
from the University of Science and Technology of
China, Hefei, China, in 2001 and 2006, respectively.

He was with the Chinese Academy of Sciences,
Beijing, China, and Zhejiang University, Hangzhou,
China. He had visiting positions at Princeton Uni-
versity, Princeton, NJ, USA, RIKEN, Wako, Japan,
The University of Hong Kong, Hong Kong, and the
University of Duisburg-Essen, Duisburg, Germany.
He is currently a Scientia Associate Professor with

the University of New South Wales, Canberra, ACT, Australia. He has
attracted a number of competitive grants with more than AUS $2.8 million
from Australia, USA, China, and Germany. His research interests include
machine learning and quantum cybernetics.

Dr. Dong received the ACA Temasek Young Educator Award by The Asian
Control Association. He was a recipient of the International Collaboration
Award, the Discovery International Award, the Australian Post-Doctoral
Fellowship from the Australian Research Council, and the Humboldt Research
Fellowship from Alexander von Humboldt Foundation in Germany. He was
a co-recipient of the Guan Zhao-Zhi Award at the 34th Chinese Control
Conference and the Best Theory Paper Award at the 11th World Congress
on Intelligent Control and Automation. He has also served as the general
chair or the program chair for several international conferences. He serves as
an Associate Editor for the IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS and a Technical Editor for the IEEE/ASME
TRANSACTIONS ON MECHATRONICS.

Authorized licensed use limited to: Nanjing University. Downloaded on October 18,2022 at 08:18:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2019.2952353
http://dx.doi.org/10.1109/TFUZZ.2020.2999746

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

