
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Instance Weighted Incremental Evolution
Strategies for Reinforcement Learning

in Dynamic Environments
Zhi Wang , Member, IEEE, Chunlin Chen , Senior Member, IEEE, and Daoyi Dong , Senior Member, IEEE

Abstract— Evolution strategies (ESs), as a family of black-box
optimization algorithms, recently emerge as a scalable alternative
to reinforcement learning (RL) approaches such as Q-learning or
policy gradient and are much faster when many central process-
ing units (CPUs) are available due to better parallelization. In this
article, we propose a systematic incremental learning method for
ES in dynamic environments. The goal is to adjust previously
learned policy to a new one incrementally whenever the environ-
ment changes. We incorporate an instance weighting mechanism
with ES to facilitate its learning adaptation while retaining
scalability of ES. During parameter updating, higher weights
are assigned to instances that contain more new knowledge, thus
encouraging the search distribution to move toward new promis-
ing areas of parameter space. We propose two easy-to-implement
metrics to calculate the weights: instance novelty and instance
quality. Instance novelty measures an instance’s difference from
the previous optimum in the original environment, while instance
quality corresponds to how well an instance performs in the
new environment. The resulting algorithm, instance weighted
incremental evolution strategies (IW-IESs), is verified to achieve
significantly improved performance on challenging RL tasks
ranging from robot navigation to locomotion. This article thus
introduces a family of scalable ES algorithms for RL domains
that enables rapid learning adaptation to dynamic environments.

Index Terms— Dynamic environments, evolution strategies
(ESs), incremental learning, instance weighting, reinforcement
learning (RL).

I. INTRODUCTION

IN REINFORCEMENT learning (RL) [1], an agent learns
to perform a sequence of actions in an environment that

maximizes cumulative reward based on the Markov decision
process (MDP) formalism [2]–[6]. A primary driving force

Manuscript received March 19, 2020; revised June 17, 2021, October 4,
2021, and January 1, 2022; accepted March 12, 2022. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62006111 and Grant 62073160; in part by the Australian Research
Council’s Discovery Projects Funding Scheme under Project DP190101566;
in part by the Natural Science Foundation of Jiangsu Province of China under
Grant BK20200330; and in part by the Alexander von Humboldt Foundation,
Germany. (Corresponding authors: Chunlin Chen; Daoyi Dong.)

Zhi Wang is with the Department of Control and Systems Engineering,
Nanjing University, Nanjing 210093, China, and also with the School of
Engineering and Information Technology, University of New South Wales,
Canberra, ACT 2600, Australia (e-mail: zhiwang@nju.edu.cn).

Chunlin Chen is with the Department of Control and Systems Engineering,
Nanjing University, Nanjing 210093, China (e-mail: clchen@nju.edu.cn).

Daoyi Dong is with the School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT 2600, Australia (e-mail:
daoyidong@gmail.com).

Color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2022.3160173.

Digital Object Identifier 10.1109/TNNLS.2022.3160173

behind the explosion of RL is its integration with powerful
nonlinear function approximators such as deep neural net-
works (DNNs), aiming to develop agents that can accomplish
challenging tasks in complex and uncertain environments.
This partnership with deep learning, i.e., deep reinforcement
learning (DRL), has enabled RL to successfully extend to
tasks with high-dimensional state and action spaces, ranging
from arcade games [7] and board games [8] to robotic control
tasks [9].

An alternative approach to solving RL problems is using
black-box optimization, known as direct policy search [10]
or neuroevolution [11] when applied to neural networks.
Evolution strategies (ESs) [12] are a particular family of these
optimization algorithms that are heuristic search procedures
inspired by natural evolution. Recent research has reported
that ES can be competitive to popular backpropagation-based
algorithms such as policy gradient and Q-learning on chal-
lenging RL problems, with much faster training speed when
many central processing units (CPUs) are available due to
better parallelization [13]. ES can reliably train neural net-
work policies, in a fashion well suited to scale up to mod-
ern distributed computer systems without requirements for
temporal discounting, backpropagating gradients, and value
function approximation [14]–[16]. The promising properties of
applying ES for solving RL problems include the following.

1) Since ES only needs to communicate scalar returns of
complete episodes, it is highly parallelizable and enables
near-linear speedups in runtime as a function of CPUs.

2) ES uses a fitness metric that consolidates returns across
an entire episode, making it invariant to sparse or
deceptive rewards with arbitrarily long time horizons.

3) The population-based evolutionary search provides
diverse exploration, particularly when combined with
explicit diversity maintenance techniques. Moreover, the
redundancy inherent in a population also facilitates
robustness and stable convergence properties, especially
when incorporated with elitism.

Traditional research on ES algorithms for RL tasks mainly
focuses on stationary optimization problems, which are pre-
cisely given in advance and remain fixed during the entire evo-
lutionary process. Instead, the environments of real-world RL
applications are often dynamic, where the state space, available
actions, state transition functions, or reward functions may
change over time instead of being static, such as for multiagent
cases [17], robot navigation problems [18], or online learning

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0304-3965
https://orcid.org/0000-0003-3929-4707
https://orcid.org/0000-0002-7425-3559

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

settings [19]. This challenge leads to the dynamic optimization
problems [20], [21] for the corresponding ES algorithms
where the fitness function, design variables, or environmental
conditions change over time.

In this article, we tackle the dynamic environment as a
sequence of stationary tasks on a certain timescale where
each task corresponds to a stationary environment during the
associated time period. Learning in such dynamic environ-
ments is characterized not only by the capability of acquiring
complex skills but also the ability to adapt rapidly under a
nonstationary task distribution. Humans and animals can learn
complex models that precisely and reliably reason about real-
world phenomena, and they can rapidly adjust such models
in the face of unexpected changes. Although (deep) neural
network models can represent very complex functions, they
lack the capability of rapidly adapting to dynamic environ-
ments. To circumvent the necessity for repeatedly reevolving,
recent research exploits transfer learning techniques [22] as
a tool to reuse information available from a set of source
tasks to help the evolutionary performance in a related but
different target task [20]. Generally, it requires repeatedly
accessing and processing a potentially large distribution of
source tasks to provide a good knowledge base for target envi-
ronments that are supposed to be consistent with the source
distribution.

An increasing number of real-world scenarios require RL
algorithms to be capable of adapting their behaviors in an
incremental manner to environments that may drift or change
from their nominal situations, continuously utilizing previous
knowledge to benefit the future decision-making process.
Hence, incremental learning [23]–[25] emerges by incremen-
tally adjusting the previously learned policy to a new one
whenever the environment changes,1 which offers an appealing
alternative that is amenable for rapid learning adaptation to
dynamic environments. Such an incremental adaptation is cru-
cial for intelligent systems operating in the real world, where
changing factors and unexpected perturbations are the norm.
Incremental learning has been widely investigated to cope
with learning tasks with an ever-changing environment [28],
in areas such as supervised learning [29], RL [23], [24],
machine vision [30], human–robot interaction [31], and system
modeling [32]. However, an equivalent notion of incremental
learning in ES for RL domains has largely eluded researchers,
with few related work available in the literature. Here,
we aim to develop a new incremental learning framework
for the derivative-free ES algorithms, which is orthogonal and
complementary to the previous one in [24] that is investigated
for the derivative-based RL approaches.

In this article, we formulate an incremental learning proce-
dure that uses natural evolution strategies (NESs) to update

1In this setting, the policy parameters of the new environment are initialized
from the previously learned optima of the original environment. The reason is
that the previous optimal policy empirically performs better than a randomly
initialized one since it has learned some of the features (e.g., nodes in
the neural network) of the state–action space. This procedure is akin to
the pretraining in the deep learning community, where layers in a neural
network extract hierarchical levels of feature representation. Model parameters
pretrained on common datasets, such as ImageNet [26], can be used as a
helpful initialization for general downstream tasks [27].

the parameters of a policy network for RL in dynamic
environments. To increase the capability of rapid learning
adaptation, we incorporate an instance weighting mechanism
with ES to improve the learning adaptation while not sacri-
ficing the speed/scalability benefits of ES. During parameter
updating, we assign higher weights to instances that contain
more knowledge on the new environment, thus encouraging
the search distribution to move toward new promising areas
in the parameter space. We propose two easy-to-implement
metrics for calculating the weights: instance novelty and
instance quality. First, instance novelty intends to indicate
the instance’s difference from the previous optimum in the
original environment, with the help of a domain-dependent
behavior characterization that describes the behavior of the
associated policy. Second, instance quality corresponds to how
well the instance performs in the new environment, where
its performance is evaluated by the received return of the
associated policy. Together, instances with high weights are
supposed either to differ more from the original environment
(high novelty) or to be more in line with the new environment
(high quality). The resulting algorithm, instance weighted
incremental evolution strategies (IW-IESs), “reinforces” the
evolutionary process of searching for well-behaving policies
that fit in the new environment, thus facilitating more rapid
learning adaptation to dynamic environments.

We test whether IW-IES improves the performance of ES
on challenging RL tasks ranging from robot navigation to
locomotion in dynamic environments. Experimental results
confirm that IW-IES is capable of handling various dynamic
environments and achieves significantly rapid learning adap-
tation to these tasks. In summary, the main contributions are
listed as follows.

1) We introduce IW-IESs, a family of scalable ES algo-
rithms that addresses challenging RL problems in
dynamic environments from an incremental learning
perspective.

2) We incorporate an instance weighting mechanism with
ES to facilitate learning adaptation to dynamic environ-
ments while retaining scalability benefits and enabling a
near-linear speedup in runtime as more CPUs are used.

3) We propose two easy-to-implement metrics for calculat-
ing the weights: instance novelty and instance quality,
which effectively enhance the evolutionary performance
almost without extra computational complexity.

4) We perform extensive experiments to verify that IW-IES
can consistently improve learning adaptation to dynamic
environments over various state-of-the-art baselines.

The rest of this article sequentially presents the background
on ES algorithms for RL domains in Section II, the proposed
algorithm with designed weighting metrics in Section III, the
experiments in Section IV, and the conclusions in Section V.

II. BACKGROUND

A. ESs for RL

RL is commonly studied based on the MDP formalism.
An MDP is a tuple �S, A, T, R, γ �, where S is the set of states,
A is the set of actions, T : S × A × S → [0, 1] is the state

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 3

transition probability, R : S × A→ R is the reward function,
and γ ∈ (0, 1] is the discounting factor. A policy is defined as
a function π : S × A→ [0, 1], a probability distribution that
maps actions to states, and

∑
a∈A π(a|s) = 1,∀s ∈ S. The

goal of RL is to find an optimal policy π∗ that maximizes the
expected long-term return J (π)

J (π) = Eρ∼π(ρ)[r(ρ)] = Eρ∼π(ρ)

[∞∑
i=0

γ iri

]
(1)

where ρ = (s0, a0, s1, a1, . . .) is the learning episode, π(ρ) =
p(s0)�

∞
i=0π(ai |si)p(si+1|si , ai), and ri is the instant reward

received when executing action ai in state si .
Inspired by natural evolution, ES is designed to cope

with high-dimensional continuous-valued domains and has
remained an active field of research for more than four
decades [12]. ES algorithms address the following search
problem: maximize a nonlinear fitness function that is a
mapping from search space S ⊆ R

d to R. At each iteration
(generation), a population of parameter vectors (gnomes) is
perturbed (mutated) and optionally recombined (merged) via
crossover. The mutation is usually carried out by adding a real-
ization of a normally distributed random vector. Each resultant
offspring is evaluated by a fitness function, and the highest
scoring parameter vectors are then recombined to form the
population for the next generation. Recent research highlights
the scalability of ES algorithms on many high-dimensional
RL tasks while offering unique benefits over traditional
gradient-based RL methods [14]. Most notably, ES is highly
parallelizable and well suited to modern distributed computer
systems with a near-linear speedup in wall-clock runtime.
Salimans et al. [13] reported that, with hundreds of parallel
CPUs, ES is able to achieve roughly the same performance
on Atari games with the same DNN architecture in 1 h as
A3C [33] did in 24 h.

Algorithms in the ES class differ in their representations
of population and methods of recombination. The version of
ES used in this article belongs to the class of NESs [34],
which constitutes a well-principled approach with a clean
derivation from first principles. The core idea is to iteratively
update parameters of the search distribution using the sampled
gradient of expected fitness. The search distribution can be
taken to be a multinormal distribution but could in principle be
any distribution of which the log density is differentiable. Let
θ denote parameters of the search distribution’s density p(z|θ)
and f (z) denote the fitness function (e.g., received return) for
instance z. At each generation, a population of search instances
is produced by the parameterized search distribution, and the
fitness function is evaluated at each instance. The expected
fitness under the search distribution is written as

J (θ) = Eθ [f (z)] =
∫

f (z)p(z|θ) dz. (2)

In a fashion similar to REINFORCE [35], NES takes gradient
steps on θ with the following estimator:

∇θ J (θ) = ∇θ

∫
f (z)p(z|θ) dz

= Eθ [f (z)∇θ log p(z|θ)]. (3)

We can obtain the Monte Carlo estimate of the search gradient
for instances in a population (z1, . . . , zm) as

∇θ J (θ) ≈ 1

m

m∑
i=1

f (zi)∇θ log p(zi |θ) (4)

where m is the population size. For each generation, NES
estimates a search gradient on the parameters toward higher
expected fitness in promising regions. Instead of using the
plain stochastic gradient for updates, NES follows the natural
gradient, which helps mitigate the slow convergence of plain
gradient ascent in optimization landscapes with ridges and
plateaus. The direction of the natural gradient is associated
with the Fisher information matrix of the given parametric
family of the search distribution

F =
∫

p(z|θ)∇θ log p(z|θ)∇θ log p(z|θ)T dz

= E[∇θ log p(z|θ)∇θ log p(z|θ)T]. (5)

If F is invertible, the natural gradient amounts to

∇̃θ J (θ) = F−1∇θ J (θ). (6)

The local structure of the fitness function is adaptively cap-
tured by the search distribution’s parameters, e.g., the mean
and covariance matrix in a Gaussian distribution. The evolu-
tionary process reiterates until a stopping criterion is met.

In RL domains, NES directly searches in the parameter
space of a neural network to find an effective policy. For scal-
ability to high-dimensional problems, the population {zi}mi=1 is
typically instantiated as a multivariate Gaussian with diagonal
covariance matrix centered at θ , i.e., zi = θ +σ�i , where σ is
the noise standard deviation. The following gradient estimator:
∇θE�∼N (0,I)[f (θ + σ�)] = 1

σ
E�∼N (0,I)[f (θ + σ�)�] (7)

can be estimated with samples

∇θ f (θ) ≈ 1

mσ

m∑
i=1

f (θ + σ�i)�i (8)

and then, parameters θ are updated iteratively by θ ← θ +
α∇θ J (θ) until convergence, where α is the learning rate.
In this way, the gradient estimation reduces to sampling unit
Gaussian perturbation vectors � ∼ N (0, I), evaluating the
performance (fitness) of the perturbed policies and aggregating
the results over a population of search instances.

If the random seeds between workers are synchronized
before optimization, each worker can know the perturbations
used by other workers. In this way, only a single scalar (fitness)
needs to be communicated among the workers to agree on
a parameter update, thus resulting in highly parallelizable
implementations. More details about ES can be found in [13]
and [34].

B. Related Work

While RL algorithms have demonstrated the ability to learn
control policies for complex and high-dimensional problems,
it is still challenging to apply them to tasks in dynamic
environments. A related class of methods in the context of

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

dynamic environments is transfer RL [22], which reuses the
knowledge from a set of related source domains to help the
learning task in the target domain. One feasible approach is
to use domain randomization to learn policies that can work
under a large variety of environments. Training a robust policy
with domain randomization has been shown to improve the
transfer from simulation to reality, also known as “sim-to-
real.” Tobin et al. [36] first trained an object detector with
randomized appearances in simulation and transferred it to
perform the real robotic grasping task. Muratore et al. [37]
randomized the parameters of the physics simulations to train
robust policies that can be applied directly to real second-order
nonlinear systems with an approximate probabilistic guarantee
on the suboptimality. Sheckells et al. [38] showed that, with
the aid of fitting a stochastic dynamics model, the learned
robust policy can be transferred back to the real vehicle with
little loss in predicted performance. These methods require
task-specific knowledge to design parameters and the range of
the randomized domain. The policy trained over an enormous
range of domains may learn a conservative strategy or fail to
learn the target task, while a small range may be insufficient
of providing sufficient variation for the policy to transfer to
uncertain environments.

Instead of learning invariance to environmental dynam-
ics, an alternative solution is to formulate an environment-
conditioned policy as a function of the current state and task
feature. Chen et al. [39] proposed an explicit representation
of the hardware variations and used it as additional input to
the policy function for each discrete instance of the environ-
ment. Yu et al. [40] incorporated an online system identifi-
cation module with history observations to explicitly predict
the dynamics parameters, which are provided as the input
to a policy to compute appropriate controls. Subsequently,
Yu et al. [41] leveraged domain randomization for learning
a family of policies conditioned on explicit environmental
dynamics. When tested in unknown environments, it directly
searched for the best policy in the family based on the task per-
formance via covariance matrix adaptation evolution strategies
(CMA-ESs). Constructing these environment-conditioned poli-
cies necessarily requires structural assumptions about the
system’s dynamics, which may not hold in the real world.
In addition, it may be difficult for more complex systems to
identify the dynamics parameters at runtime.

A similar idea is to train an adaptive policy that is able
to identify the environmental dynamics and apply actions
appropriate for different system dynamics. In the absence
of direct knowledge of parameters of interest, the dynam-
ics can be inferred from a history of past states and
actions. Peng et al. [42] implicitly embedded the system
identification module into the policy by using a recurrent
model, where the internal memory acts as the summary
of past states and actions, thereby providing a mechanism
for inferring the system’s dynamics from the policy itself.
Andrychowicz et al. [43] formulated memory-augmented
recurrent polices for in-hand manipulation tasks, which admits
the possibility to learn an adaptive behavior and implicit
system identification on the fly. These adaptive policies can
be trained in the assumed source tasks and deployed in the

unknown dynamic environment without fine-tuning. However,
policies trained over the source distribution may not generalize
well when the discrepancy between the target environment and
the source is too large.

Another line of research that tries to address dynamic envi-
ronments is meta-learning, also called learning-to-learn [44].
A recent trend in meta-learning is to find good initial weights
from which adaptation can be quickly performed to tasks sam-
pled from a distribution. One such approach is the gradient-
based model-agnostic meta-learning (MAML) algorithm [45].
Gajewski et al. [46] derived a novel objective that maximizes
the diversity of exhibited behaviors and explicitly optimizes
the evolvability of ES algorithms, i.e., the ability to further
adapt to changing circumstances. Houthooft et al. [47] evolved
a differentiable loss function that is meta-trained via temporal
convolutions over the agent’s experiences, resulting in faster
test time learning on novel tasks sampled from the same
distribution. Song et al. [48] employed ES algorithms to solve
the MAML problem and to train the meta-policy without
estimating any second derivatives. In general, existing methods
require repeatedly accessing and processing a potentially large
distribution of source tasks to provide a reliable knowledge
base for target environments that are supposed to be consistent
with the source distribution. In contrast, our incremental
learning mechanism concentrates on the ability to rapidly
learn and adapt in a sequential manner, without any structural
assumptions or prior knowledge on the dynamics of the ever-
changing environment.

III. INSTANCE WEIGHTED INCREMENTAL

EVOLUTION STRATEGIES

In this section, we first formulate the incremental learning
procedure to address ES algorithms in a dynamic environment.
Then, we present the framework of incremental ESs incorpo-
rated with the instance weighting mechanism. Next, we intro-
duce two easy-to-implement metrics of instance novelty and
instance quality as well as their mixing variant to calculate
the weights. Finally, we give the integrated IW-IES algorithm
based on the above implementations.

A. Problem Formulation

Throughout this article, we tackle the dynamic environment
as a sequence of stationary tasks on a certain timescale. Each
task corresponds to the specific environment characteristics
during the associated time period. The dynamic environment
involves an infinite task distribution D over time

D = [M1, . . . , Mt−1, Mt , . . .] (9)

where each Mt ∈ M denotes the specific MDP that is
stationary during the t th time period and M denotes the space
of MDPs. We assume that the environment changes in terms
of the reward and transition functions only while keeping the
same state–action space. Suppose that in the (t − 1)th time
period, the optimal parameters θ∗t−1 are obtained by evolving
the search distribution as

θ∗t−1 = arg max
θ∈Rd

JMt−1(θ). (10)

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 5

When the environment changes to Mt , the goal of incremental
learning is to adjust the previous optimum of policy parameters
θ∗t−1 to new θ∗t that fit in the new environment

θ∗t = arg max
θ∈Rd

JMt (θ) (11)

with initialization of θ t ← θ∗t−1. Continually, the optimum
of policy parameters is incrementally adjusted to a new one,
(θ∗t+1, θ

∗
t+2, . . .), whenever the environment changes.

Remark 1: As a matter of fact, automatic detection and
identification of changes is also an important component of
learning in dynamic environments. In this article, we merely
concentrate on how ES algorithms enable rapid learning
adaptation to the new environment once the change has
been detected and identified. It is analogous to investigations
in fault-tolerant control or dynamic multiobjective optimiza-
tion [20], which solely focus on how controllers/algorithms
can quickly accommodate dynamic changes while leaving the
detection and identification to be approached individually.

B. Framework

In the incremental learning setting, initializing policy para-
meters from the original environment empirically benefits the
evolutionary process when starting to interact with the new
environment since the previous optimum has learned some of
the feature representations of the state–action space. However,
the previous optimum of policy parameters may be a local
one that has been overfitted to the original environment,
especially when using a nonlinear function approximator such
as the (deep) neural networks. This potential drawback in the
incremental initialization may degrade the performance of the
new evolutionary process in the long term.

Unlike in supervised learning with DNNs, in which local
optima are not thought to be a problem [49], the training
data in RL are determined by the executed policies associated
with the search distribution. Fig. 1 shows a simple example
of the 2-D navigation task, where a three-sided wall blocks
the previous optimal path to the goal in the new environment.
Due to not having adapted to the new environment yet, the
search distribution tends to induce policies that perform well
in the original environment [e.g., π1 in Fig. 1(b)] and move
around regions in the parameter space adjacent to the previous
optimum. Therefore, the training data for the new evolutionary
process are probably limited and it may not discover alterna-
tive strategies with potentially larger payoffs (e.g., π2 or π3).
Thus, it probably gets stuck in bad local optima. Here, we give
another example. Suppose that a navigation robot has learned
how to reach a goal in the south direction. When the goal
changes to the north, the robot still tends to head south before
it can slowly adapt to the new environment.

It can be inferred that, directly updating policy parame-
ters from the previous optima probably hinders the search
distribution to effectively explore the new environment, thus
slowing down the learning adaptation. To alleviate this prob-
lem, we incorporate an instance weighting mechanism with
ES to improve its learning adaptation while preserving the
speed/scalability benefits of ES. The idea is straightforward;
during parameter updating, we assign higher weights to

Fig. 1. Simple example of the 2-D navigation task in a dynamic environment.
Ṡ and Ġ are the start and goal points, respectively, and the black U-shaped
object is a three-sided wall. (a) Original environment Mt−1. (b) New environ-
ment Mt , where N(·) denotes instance novelty and Qu(·) denotes instance
quality.

instances out of a population that contain more knowledge on
the new environment, thus encouraging the search distribution
to move toward new promising regions in the parameter
space.

Recall the gradient estimator in (7) where NES estimates the
gradient by taking a sum of sampled parameter perturbations
� weighted by their fitness f (θ + σ�), where σ is the noise
standard deviation. It rewards instances with high fitness and
encourages the search distribution to move toward the direction
of those “promising” instances. In a similar spirit, we rearrange
the canonical objective function in (2) by multiplying it with
a weight w(z) assigned to each instance z as

J (θ) = Eθ [w(z) f (z)] =
∫

w(z) f (z)p(z|θ) dz. (12)

Consequently, the gradient estimator in (7) becomes

∇θ f (θ) ≈ 1

mσ

m∑
i=1

w(θ + σ�i) f (θ + σ�i)�i . (13)

Intuitively, the algorithm follows the approximated gradient
in the parameter space toward instances that achieve high
fitness of f (θ +σ�i) and exhibit high weights of w(θ +σ�i).
If the weighting metric can correctly indicate the amount of
new knowledge contained by the instance, then the gradient
estimator will reward instances with more new knowledge
and encourages the search distribution to move toward new
promising regions of parameter space that fit in the new
environment. The instance weighting mechanism “reinforces”
the evolutionary process that searches for well-behaving poli-
cies in the new environment, thus improving the learning
adaptation to dynamic environments.

Based on the above insight, Algorithm 1 presents the
framework of the formalized incremental learning procedure.
It is clear that the performance highly depends on how the
weight is calculated for each instance. Next, we will introduce
the weighting metrics of instance novelty, instance quality, and
their mixing variant.

C. Weighting Metrics

1) Instance Novelty: Instance novelty, as our first metric,
is designed to indicate the instance’s difference from the

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Incremental Learning Framework
Input: Current time period t (t ≥ 2); learning rate α;

population size m; noise standard deviation σ
Output: Optimal policy parameters θ∗t for Mt

1 Initialize θ t ← θ∗t−1, and m CPU workers with known
random seeds

2 while not converged do
3 for each worker i = 1, . . . , m do
4 Sample �i ∼ N (0, I)
5 Compute fitness fi = f (θ t + σ�i)
6 Calculate and normalize instance weights

wi = w(θ t + σ�i) by metrics in Section III-C
7 end
8 Send all scalar fitness fi and weights wi from each

worker to every other worker
9 for each worker i = 1, . . . , m do

10 Reconstruct all perturbations �i using known
random seeds

11 Set θ t ← θ t + α 1
mσ

∑m
i=1 wi fi�i

12 end
13 end

previous optimum in the original environment. Instances with
high novelty are supposed to induce different policies from
those performing well in the original environment and hence
probably contain more knowledge on the new environment.
As shown in Fig. 1(b), compared to π1, the example policy
π2 exhibits the behavior that differs more from the previous
optimum and is supposed to reveal higher instance novelty.

To attain feasible computation of such difference, one
needs to hand-design or learn an abstract, holistic description
of an agent’s lifetime of behavior policy. Let πz denote
the executing policy induced by instance z. The policy is
assigned a domain-dependent behavior characterization b(πz)
that describes its behavior. For example, in the case of a
humanoid locomotion problem, b(πz) may be as simple as
a 2-D vector containing the humanoid’s final coordinate or
a concatenation of coordinates that records the humanoid’s
movement trajectory. Throughout training in the original envi-
ronment Mt−1, the final behavior characterization b(πθ∗t−1

) can
be obtained corresponding to the optimal instance θ∗t−1. Next,
in the new environment Mt , a particular instance’s novelty
N(πz) is calculated by computing the distance between behav-
ior characterizations of this instance and the previous optimum

N(πz) = dist(b(πz), b(πθ∗t−1
))

= ∥∥b(πz)− b
(
πθ∗t−1

)∥∥
2. (14)

Here, the Euclidean distance (L2-norm) is used for behav-
ior characterizations. However, any distance function can be
employed in principle.

Now, the calculated novelty is used as the first metric to
assign the instance weight out of a population as

w(zi) = m · eN(πzi)/ρ∑m
j=1 eN(πz j)/ρ

, i = 1, . . . , m (15)

where ρ ∈ R, ρ > 0 is the temperature hyperparameter for
controlling the weight distribution. When ρ becomes larger,
all w’s will be close to 1, and this weighting metric reduces to
uniform weighting. In practice, we increase the temperature ρ
by a small increment 	ρ at each parameter updating iteration.
As the evolution proceeds, the effect of instance weight-
ing gradually becomes weak, and the exploration of novel
behaviors decreases. This procedure is akin to the classical
“exploration–exploitation tradeoff” in the RL or evolutionary
computation community, where exploration is progressively
replaced by exploitation as the learning/evolution proceeds.

Remark 2: This metric is related to the concept of curiosity
and seeking novelty in RL research and developmental robot-
ics [50], which pushes a learning robot toward novel or curious
situations. The notion of novelty is also analogous to that
of novelty search algorithms in the evolutionary computation
community [14], [51], which is inspired by nature’s drive
toward diversity and stimulates policies to explore different
behaviors from those previously performed.

2) Instance Quality: As it literally means, instance quality
corresponds to how well the instance performs in the new
environment. Naturally, the performance is evaluated by the
received return of the induced learning policy. Since adjust-
ing the previous optimum to a new one under a new data
distribution could get stuck in bad local basins, assigning
greater importance to high-quality instances can encourage
the policies to move toward regions of parameter space that
better fit in the new environment, which may be far away
from the previous optimum. As shown in Fig. 1(b), due to
environmental change, the two example policies, π2 and π3,
cannot obtain a satisfactory learning performance yet in the
new environment. On the other hand, compared with π3, the
policy π2 is more prone to inducing the new optimal path and
receives a higher return in the new environment. It empirically
implies that policies receiving higher returns are supposed to
be more in line with the new environment and hence contain
more new knowledge.

Based on the above observation, a particular instance’s
quality Qu(πz) can be directly approximated by the received
return of its induced policy as

Qu(πz) = r(πz). (16)

Also, the second metric for assigning the instance weight is
calculated as

w(zi) = m · eQu(πzi)/ρ∑m
j=1 eQu(πz j)/ρ

, i = 1, . . . , m. (17)

Similarly, we also increase the temperature ρ by a small
increment 	ρ at each iteration, gradually approaching the
form of uniform weighting as the evolution proceeds. During
parameter updating, higher importance weights are assigned to
episodes that contain more new information, thus encouraging
the previous optimum of parameters to be faster adjusted to a
new one that fits in the new environment. It may be helpful
for the algorithm to escape from those “deceptive” regions
adjacent to the parameter space of the previous optimum.

3) Mixing Variant: We observe the fact that weighting
by instance novelty encourages executing policies to exhibit

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 7

different behaviors from those well-performed in the original
environment, while weighting by instance quality strength-
ens the searching for well-performing policies in the new
environment. Recalling the example in Fig. 1(b), we have
N(π1) < N(π2) < N(π3) and Qu(π1) > Qu(π2) > Qu(π3).
Using novelty only as the weighting metric may overvalue
instances with bad performance (e.g., π3), while using quality
only may lead to policies getting stuck in a deceptive trap
(e.g., π1). Therefore, to make the most use of the two metrics,
we explore a mixing variant to calculate the weight as

w(zi) = m · eN(πzi)·Qu(πzi)/ρ∑m
j=1 eN(πz j)·Qu(πz j)/ρ

, i = 1, . . . , m. (18)

The following experimental results show that incremental ESs
with the mixing weighting metric generally perform the best
among all compared implementations.

D. Integrated Algorithm

Based on the problem formulation and the instance weight-
ing mechanism with designed metrics, Algorithm 2 presents
the integrated IW-IES algorithm for RL in dynamic environ-
ments. In the incremental learning setting, an RL agent is
interacting with a dynamic environment D = [M1, M2, . . .].
In the first time period, the policy parameters are randomly
initialized in Line 3, followed by the evolutionary process from
scratch using the canonical NES algorithm in Lines 4–14.
In a subsequent t th (t ≥ 2) time period (new environment),
we first obtain the previous optimal policy parameters θ∗t−1 and
the corresponding behavior characterization b(πθ∗t−1

) from the
last time period (original environment) in Line 16. Then, the
policy parameters are initialized from the previous optimum
in Line 17. In Line 22, we assign a weight to each instance
according to the designed metrics, aiming at facilitating the
learning adaptation to the new environment. Finally, the policy
parameters iteratively evolve in Line 27 until the new optimum
θ∗t is obtained for Mt .

The use of specific metrics for the instance weight-
ing mechanism yields three variants of implementations:
1) IW-IES-N: using instance novelty to calculate weights
in (15); 2) IW-IES-Qu: using instance quality as the weighting
metric in (17); and 3) IW-IES-Mix: using the mixing weighting
metric in (18). Instance novelty is designed to measure the
instance’s difference from the previous optimum of the original
environment, while instance quality corresponds to how well
the instance performs in the new environment. Together,
an instance with high novelty or high quality is supposed
to contain more knowledge on the new environment. With
this mechanism, IW-IES prefers behaviors that either differ
more from the original environment or better fit in the new
environment, thus encouraging the search distribution to move
toward new promising regions of parameter space.

Remark 3 (Scalability): As shown in [13], ES scales well
with the amount of computation available, enabling a
near-linear speedup in runtime as more CPUs are used. The
proposed algorithm, IW-IES, enjoys the same parallelization
benefits as ES because it uses an almost identical optimiza-
tion process. In IW-IES, broadcasting both scalars of fitness

Algorithm 2 IW-IES
Input: Dynamic environment D = {M1, M2, . . .}; current

time period t (t ≥ 1); learning rate α; population
size m; noise standard deviation σ ; increment of
temperature 	ρ

Output: Optimal policy parameters θ∗t for Mt

1 Initialize: m CPU workers with known random seeds
2 if t equals to 1 then
3 Randomly initialize θ t

4 while not converged do
5 for each worker i = 1, . . . , m do
6 Sample �i ∼ N (0, I)
7 Compute fitness fi = f (θ t + σ�i)
8 end
9 Send all scalar fitness fi from each worker to

every other worker
10 for each worker i = 1, . . . , m do
11 Reconstruct all perturbations �i using known

random seeds
12 Set θ t ← θ t + α 1

mσ

∑m
i=1 fi�i

13 end
14 end
15 else
16 Obtain θ∗t−1 and behavior characterization b(πθ∗t−1

)

17 Initialize: θ t ← θ∗t−1, and the temperature ρ
18 while not converged do
19 for each worker i = 1, . . . , m do
20 Sample �i ∼ N (0, I)
21 Compute fitness fi = f (θ t + σ�i)
22 Calculate instance weights wi = w(θ t + σ�i) by

metrics in (15), (17), or (18)
23 end
24 Send all scalar fitness fi and weights wi from each

worker to every other worker
25 for each worker i = 1, . . . , m do
26 Reconstruct all perturbations �i using known

random seeds
27 Set θ t ← θ t + α 1

mσ

∑m
i=1 wi fi�i

28 end
29 ρ ← ρ +	ρ
30 end
31 end

f (θ t + σ�i) and instance weight w(θ t + σ�i) would incur
almost zero extra network overhead because the scalars usually
take up much less memory than the large parameter vector
θ t that must be broadcast at the beginning of each iteration.
Moreover, the addition of the behavior characterization of
previous optimal policy does not hurt scalability because it is
kept fixed during the calculation of instance novelty and the
coordinator needs to broadcast it only once at the beginning
of each iteration.

Remark 4 (Complexity): Here, we also give a rough com-
plexity analysis on the designed metrics. First, for calculating
instance novelty N(πz), we need to compute each instance’s
behavior characterization b(πz), which can be simultaneously
acquired when primitively executing the associated behavior

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

policy to compute its fitness. For example, in the humanoid
locomotion case, the observed reward and state can be used
for calculating the fitness and the behavior characterization,
respectively. Besides, the behavior characterization usually
consumes much less memory than the parameter vector of
instance z. Second, calculating instance quality Qu(πz) would
not consume any computation for extra variables since the
quality indicator, i.e., the received return r(πz), has been
already acquired in the primitive step for computing the fitness.
Together, it can be inferred that the designed weighting metrics
hardly increase the computational complexity of ES. Hence,
we claim that the two metrics are “easy-to-implement.”

IV. EXPERIMENTS

To test IW-IES, we conduct experiments on challenging
RL tasks ranging from classical navigation tasks to bench-
mark MuJoCo robot locomotion tasks [52]. Using agents
in these tasks, we design challenging dynamic environments
that involve (multiple) changes in the underlying environment
distribution, where incremental learning is critical. Through
these experiments, we aim to build problem settings that
are representative types of disturbances and shifts that a
real RL agent may encounter in practical applications. The
questions that we aim to study from our experiments include
the following.
Q1: Can IW-IES handle various dynamic environments

where the reward or state transition function changes
over time?

Q2: Can IW-IES successfully facilitate rapid learning adap-
tation to these dynamic environments?

Q3: How do the two weighting metrics, instance novelty and
instance quality, affect the performance of IW-IES?

A. Experimental Settings

We compare IW-IES to four baseline methods.
1) Robust [38]: It takes the most recent observation (i.e.,

πrobust : s �→ a) as input and uses domain randomization
to train a robust policy that is supposed to work for
all training environments, while current environmental
dynamics cannot be identified from its input.

2) SO-CMA [41]: It uses the environment feature μ as
additional input (i.e., πso : [s, μ] �→ a) and trains an
environment-conditioned policy with domain random-
ization. Given particular μ, the instantiated policy is
called a strategy. In the target environment, it performs
strategy optimization using CMA-ES, which only opti-
mizes the environment feature input to the policy.

3) Hist [42]: The adaptive policy is represented as a long
short-term memory (LSTM) network that takes a history
of observations as input, i.e., πadapt : [st−h, . . . , st] �→ a.
This allows the policy to implicitly identify the envi-
ronment being tested and to adaptively choose actions
based on the identified environment.

4) ES-MAML [48]: It trains a meta-policy on a variety
of tasks based on the NES algorithm such that it can
solve new learning tasks using only a small number
of training samples. More details about MAML can be
found in [45].

In all domains, the policy model evolved by IW-IES is
instantiated as a feedforward neural network with two 128-unit
hidden layers separated by ReLU nonlinearities, similar to the
benchmark network architectures used in [13] and [14]. For
a fair comparison to our method, the network architecture of
Robust and ES-MAML is set the same as that of IW-IES.
SO-CMA uses the same network architecture except that it
takes the environment feature as additional input. For Hist,
we feed a history of five observations to a recurrent policy
network that consists of a 64-unit embedding layer and a
64-unit LSTM layer separated by ReLU nonlinearities. In this
way, the recurrent policy network has the same order of
magnitude number of parameters as the policy model of
IW-IES. While existing methods mostly use policy gradient
algorithms to train neural network policies, we implement
these baseline methods by the NES algorithm as a more
challenging reference point. The number of CPU workers is set
as m = 16 for parallelizing IW-IES and all baseline methods.
The universal polices of baselines are trained over a variety
of environments that are randomly sampled from a known
distribution. For SO-CMA, the environment feature is assumed
to essentially capture the MDP drawn from the distribution,
which, for instance, can be represented by the position of goals
or obstacles in a navigation task. Furthermore, we continue to
train the universal polices after transferring to the new task
whenever the environment changes, using the same number
of samples IW-IES consuming in each environment. We refer
to this additional training step as “fine-tuning.” In contrast,
IW-IES focuses on directly adapting to dynamic environments
on the fly, avoiding access to a large distribution of training
environments, and releasing the dependency on structural
assumptions of environmental dynamics.

For each report unit (a particular algorithm running on a
particular task), we define two performance metrics. One is
the received return for executing the policy induced by the
unperturbed instance in each evolution generation, defined as
r(πθ). The other is the average return received over all gen-
erations, defined as (1/I)

∑I
i=1 ri (πθ), where I is the number

of total evolving generations. The former will be plotted in
figures and the latter will be presented in tables. Due to the
randomness of training neural networks, we run three trials
with different seeds and adopt the mean as the performance
for each report unit. We utilize a statistical analysis method to
address the issue of “stochastic” dynamic environments. The
learning agent first learns an optimal policy given a randomly
chosen environment. Then, the environment randomly changes
to a new one, and we record the performance of all tested
methods when adapting to the new environment. We repeat
the process ten times and report the mean and standard error
to demonstrate the performance for learning in stochastic
dynamic environments. The code is available online.2

B. Navigation Tasks

We first test our IW-IES algorithms on a set of navigation
tasks where a point agent must move to a goal position in 2-D

2https://github.com/HeyuanMingong/iwies

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 9

within a unit square. The state is the current observation of the
2-D position, and the action corresponds to the 2-D velocity
commands that are clipped to be in the range of [−0.1, 0.1].
The reward is the negative squared distance to the goal minus
a small control cost that is proportional to the action’s scale.
Each learning episode (generated by the instance z) always
starts from a given point and terminates when the agent is
within 0.01 of the goal or at the horizon of H = 100. The
hyperparameters are set as: population size m = 16 and noise
standard deviation σ = 0.05. The learning rate is set as the
same for all tested methods in each task.

As described in Section III-C, the first weighting metric
requires a domain-specific behavior characterization for cal-
culating the novelty of each instance z. For the navigation
problems, the behavior characterization is the trace of the
agent’s (x, y) locations through all time steps

b(πz) =
{(

x1
z , y1

z

)
, . . . ,

(
x H

z , y H
z

)}
. (19)

Computing instance novelty also requires a distance function
between behavior characterizations of the instance z and
the previous optimum θ∗t−1. Following [14] and [51], we use
the average Euclidean distance of these 2-D coordinates as the
distance function:

dist
(
b(πz), b

(
πθ∗t−1

)) = 1

H

H∑
i=1

√(
x i

z − x i
t−1

)2 + (
yi

z − yi
t−1

)2

(20)

where {(x i
t−1, yi

t−1)}Hi=1 are the agent’s locations when execut-
ing the previous optimal policy πθ∗t−1

.
1) Q1: We start with two illustrative cases of simulated

dynamic environments, as shown in Fig. 2.

1) Case I: The dynamic environment is created by ran-
domly changing the goal position while keeping the start
point fixed at (0, 0). The environment changes in terms
of the reward function, and the goal position can be used
as the environment feature for SO-CMA.

2) Case II: The start and goal points are kept fixed at
(0,−0.5) and (0, 0.5), respectively. The dynamic envi-
ronment is created by moving a 0.6×0.6 square obstacle
at random. When hitting on the obstacle, the agent
will bounce to its previous position. The environment
changes in terms of the state transition function, and the
environment feature can be represented by the centering
position of the square obstacle.

2) Q2: We present the primary experimental results of
baselines and IW-IES implemented on the two cases of
dynamic environments. The average return (of the executing
policy induced by the unperturbed instance) per generation
across ten independent runs is plotted in Fig. 3. Here and in
similar figures in the following, the mean of average return
per generation across ten runs is plotted as the bold line with
95% bootstrapped confidence intervals of the mean (shaded).
Furthermore, Table I reports the numerical results in terms
of average received return over 200 training generations for
Case I and over 1000 generations for Case II. Here and
in similar tables in the following, the mean across ten runs

Fig. 2. Two illustrative cases of dynamic environments in the 2-D navigation
tasks. Ṡ is the start point and Ġ is the goal point. (a) Case I: goal changes.
(b) Case II: landscape changes and the gray is a square obstacle.

TABLE I

AVERAGE RECEIVED RETURN OVER ALL TRAINING GENERATIONS OF

BASELINES AND IW-IES IMPLEMENTED ON TWO NAVIGATION TASKS

is presented, and the confidence intervals are corresponding
standard errors. The best performance is marked in boldface.

In Case I, since all baselines pretrain the policy model
over a large distribution of randomized source environments,
they receive higher jumpstart return than IW-IES when start
interacting with the new environment. SO-CMA obtains good
jumpstart performance in the beginning. However, in the
latter learning process, it receives nonincreasing return that
is smaller than other baseline methods. SO-CMA can adapt to
dynamic environments with fewer data by optimizing only the
environment feature input to the policy [41], whereas its final
performance may be inferior to methods that adjust the neural
network weights in the fine-tuning phase. By comparison,
despite obtaining smaller return initially, IW-IES exhibits sig-
nificantly faster learning adaptation to dynamic environments
than all baselines. For instance, IW-IES receives near-optimal
return with only 40 generations, whereas Robust, Hist, and
ES-MAML need to take more than 200 generations for achiev-
ing comparable performance. In addition, the statistical results
show that IW-IES obtains smaller confidence intervals and
standard errors than all baselines, indicating that IW-IES can
provide more stable learning adaptation to new environments.

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Received return per generation of baselines and IW-IES implemented on two navigation tasks. (a) Case I. (b) Case II.

Next, the results in Case II reveal some differences.
In Case I, IW-IES achieves faster learning adaptation than
baselines, while the performance gap is relatively moderate.
The reason is that, in this simple case of navigation, all
baselines can evolve near-optimal policies that will find a
path to the new goal, as shown in Fig. 2(a). In contrast,
IW-IES obtains much higher final return in Case II. Since
navigating to the goal while bypassing the wall is usually
difficult, policies evolved by baselines tend to head directly
toward the goal. Thus, it easily terminates in front of the huge
obstacle and gets stuck in bad local optima. Instead, the pro-
posed instance weighting mechanism “reinforces” the policy
evolved by IW-IES to explore behaviors that are different from
previous optima (instance novelty) and to exploit behaviors
that are in line with the new environment (instance quality).
Therefore, the policy evolved by IW-IES is more capable of
bypassing the deceptive wall first and moving to the goal
finally. The primary results verify that the instance weighting
mechanism effectively encourages the search distribution to
move toward promising regions of parameter space that fit in
the new environment. IW-IES can obtain superior performance
compared to all baselines, demonstrating the effectiveness of
our method for addressing incremental learning problems in
dynamic environments.

In the above experiments, the original and new environ-
ments are sampled from the same distribution. In addition,
we employ the Case I navigation task to serve as an illustrative
example to test the performance of baselines and IW-IES
when the discrepancy between distributions of the original
and new environments is large. The universal policies of
baselines are trained over a limited range of environments
where goal positions are in the first quadrant. Then, they
are transferred to and fine-tuned in new environments where
goal positions are in the third quadrant. For IW-IES, the
original and new environments are sampled from the same
distributions as those of baselines. Fig. 4 presents the received
return per generation of baselines and IW-IES, and Table II
shows the corresponding numerical results. It is observed that
the advantage of IW-IES over baselines is more prominent
than the case with no discrepancy of environment distrib-
utions, as shown in Fig. 3(a). Consistent with the analysis

Fig. 4. Received return per generation of baselines and IW-IES in Case I
navigation task with a large discrepancy between environment distributions.

TABLE II

AVERAGE RECEIVED RETURN OVER ALL GENERATIONS OF BASELINES

AND IW-IES IMPLEMENTED ON CASE I NAVIGATION TASKS

in Section II-B, existing methods rely on transferring the
knowledge trained over a large distribution of source tasks to
new environments that are in line with the source distribution.
The universal policies trained by baselines may not generalize
well when the discrepancy between distributions of the original
and new environments is too large. In contrast, IW-IES can
stably facilitate learning adaptation to dynamic environments
regardless of the distribution discrepancy.

3) Q3: To identify the respective effects of the two weight-
ing metrics, we adopt a control variate approach to separate
them apart for observation. In each task, we first initialize
policy parameters from the original environment and then
implement four variants of IW-IES according to the employed
weighting metric.

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 11

Fig. 5. Received return per generation of the four variants of IW-IES implemented on two navigation tasks. (a) Case I. (b) Case II.

TABLE III

AVERAGE RECEIVED RETURN OVER ALL TRAINING GENERATIONS OF

THE FOUR VARIANTS OF IW-IES AND FS ON TWO NAVIGATION TASKS

1) CA: No instance weighting mechanism is applied, i.e.,
continuously adapting a single policy model whenever
the environment changes. This is representative of com-
monly used dynamic evaluation methods [19].

2) IW-IES-N: Use instance novelty in (15) as the metric.
3) IW-IES-Qu: Use instance quality in (17) as the metric.
4) IW-IES-Mix: Use the mixing weighting metric in (18).

In addition, we also investigate the performance of the policy
trained with randomly initialized parameters whenever the
environment changes, i.e., learning from scratch (FS). For
the four variants and FS, Fig. 5 presents their learning per-
formance per evolution generation, and Table III reports the
average received return over all training generations.

We observe that CA usually has a better performance than
FS regarding the adaptation speed and the average received
return. Especially, CA can achieve jumpstart performance
at the beginning of the new learning process compared to
FS. It is consistent with the analysis in Section III-B that,
initializing policy parameters from the original environment
empirically benefits the evolutionary process since the previ-
ous optimum has learned some of the feature representations
of the state–action space. This is also a basic impetus for the
formalized incremental learning procedure in this article.

In Case I, using instance novelty or instance quality alone
as the weighting metric can achieve faster learning adaptation
to the dynamic environment. The performance gap in terms
of average return is more pronounced for smaller amount of
computation, which is supposed to benefit from the instance
weighting mechanism that allows for distinct acceleration of

TABLE IV

RUNTIME (SECONDS) OF THE FOUR VARIANTS OF IW-IES WITH VARYING

NUMBERS OF CPU WORKERS ON CASE I NAVIGATION TASK

incremental learning adaptation. The weighting metric using
instance quality (IW-IES-Qu) better improves the learning
performance than the one using instance novelty (IW-IES-N)
and combining the two weighting metrics together (IW-IES-
Mix) achieves slightly better performance than IW-IES-Qu.

In Case II, both CA and IW-IES-Qu fail to find the new
goal when the huge obstacle blocks the previous optimal
path. In contrast, introducing the weighting mechanism with
instance novelty will degrade the learning performance in
initial generations. To bypass the obstacle in this “deceptive”
case, both IW-IES-N and IW-IES-Mix need to encourage the
learning agent to exhibit novel behaviors to a large extent,
thus resulting in the temporarily pessimistic performance in the
early stage. As the evolution proceeds, the effect of instance
weighting becomes weaker, and they can gradually find the
optimal path to the new goal instead of getting stuck in front of
the wall. In this case, IW-IES-N better improves the learning
performance than IW-IES-Qu, and IW-IES-Mix obtains the
best learning adaptation to the dynamic environment where
the obstacle changes over time.

In summary, the two weighting metrics of instance novelty
and instance quality can provide distinguished advantages
for different kinds of dynamic environments. Under most
circumstances, combining the two weighting metrics together
leads to the best learning adaptation.

Furthermore, we employ the Case I navigation task to
serve as an illustrative example to verify the scalability of
IW-IES. Table IV shows the runtime of the four variants of
IW-IES with varying numbers of parallelized CPU workers.
It is observed that IW-IES retains scalability and enables a
near-linear speedup in runtime as more CPU workers are

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. 2-D navigation task in a complex stochastic dynamic environment,
where both the goal and circular puddles may change over time.

Fig. 7. Received return per generation of all tested methods implemented
on the complex stochastic dynamic environment. (a) Baselines and IW-IES.
(b) FS and four variants of IW-IES.

used. Obviously, introducing the instance novelty or instance
quality as the weighting metric hardly increases the runtime
of our method. The result empirically verifies the claim in
Remark 4 that the designed weighting metrics hardly increase
the computational complexity of ES.

4) Complex Stochastic Dynamic Environments: It is verified
from the above results that IW-IES can successfully facilitate
the learning adaptation to dynamic environments where the
reward or state transition function may change over time.
Here, we test IW-IES on a more complex case of dynamic
environments, which is also a modified version of the bench-
mark puddle world environment presented in [53] and [54].
As shown in Fig. 6, the agent should drive to the goal while
avoiding three circular puddles of different sizes. When hitting
on the puddles, the agent will bounce to its previous position.
The dynamic environment is created by moving both the
goal and puddles within the unit square randomly. Hence,
the environment changes in terms of both the reward and
state transition functions. Fig. 7 shows the received return per
generation of the baselines, FS, and the four IW-IES variants,
and Table V presents the corresponding numerical results in
terms of average return over 500 evolving generations of all
tested methods. We can observe that IW-IES is still capable
of achieving significantly faster learning adaptation to this
complex stochastic dynamic environment in a statistical sense.

From the above comprehensive experimental results on 2-D
navigation tasks, it can be well demonstrated that the following
conditions hold.

A1: IW-IES is able to handle various dynamic environments
that change in terms of the reward function [Fig. 2(a)],
the state transition function [Fig. 2(b)], or both (Fig. 6).

A2: IW-IES successfully enables faster and more stable
learning adaptation to these dynamic environments.

TABLE V

AVERAGE RETURN OVER 500 EVOLVING GENERATIONS OF ALL TESTED
METHODS ON THE COMPLEX STOCHASTIC DYNAMIC ENVIRONMENT

Fig. 8. Challenging MuJoCo locomotion tasks including (a) Swimmer, |S| =
8 and |A| = 2; (b) Hopper, |S| = 11 and |A| = 3; and (c) HalfCheetah,
|S| = 20 and |A| = 6.

A3: The two weighting metrics of instance novelty and
instance quality can offer distinct superiority for incre-
mental learning in different kinds of dynamic environ-
ments, and combining them together usually achieves
the best learning adaptation.

C. Locomotion Tasks

The above results illustrate that IW-IES is simply well suited
to the 2-D navigation domains, and it significantly facilitates
the learning adaption to various dynamic environments. A nat-
ural question is whether IW-IES can be successfully applied
to more difficult domains. It is necessary to test IW-IES
on a well-known problem of considerable difficulty. Thus,
we also investigate three high-dimensional locomotion tasks
with the MuJoCo simulator [52], aiming at testing whether
IW-IES can achieve locomotion at the scale of DNNs on
much more sophisticated dynamic environments. As shown in
Fig. 8, the continuous control tasks require a swimmer/one-
legged hopper/planar cheetah robot to move at a particular
velocity in the positive x-direction. These three scenarios are
representative locomotion tasks with growing dimensions of
state and action spaces. The reward is an alive bonus plus a
regular part that is negatively correlated with the absolute value
between the agent’s velocity and a goal. The goal velocity
is randomly chosen between: [0, 0.5] for Swimmer, [0, 1]
for Hopper, and [0, 2] for HalfCheetah. We also simulate a
stochastic dynamic environment by changing the goal velocity
at random across ten independent runs.

In the locomotion domains, the behavior characterization for
calculating instance novelty should be able to distinguish the
robot’s gaits in the x-direction, in accordance with the internal
learning tasks. According to this principle, a feasible behavior
characterization is the offset of the robot’s coordinate in the
x-direction through all time steps

b(πz) =
{
x1

z − x0
z , . . . , x H

z − x0
z

}
(21)

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 13

Fig. 9. Received return per generation of baselines and IW-IES on the challenging locomotion tasks. (a) Swimmer. (b) Hopper. (c) HalfCheetah.

Fig. 10. Received return per generation of FS and the four variants of IW-IES on locomotion tasks. (a) Swimmer. (b) Hopper. (c) HalfCheetah.

where x0 and x i (i = 1, . . . , H) correspond to the offsets
of center of mass along the x-direction at the initial and the
i th time steps. Consistently with the 2-D navigation domains,
we use the average Euclidean distance of the 1-D coordinates
as the distance function between behavior characterizations of
instance z and the previous optimum θ∗t−1

dist
(
b(πz), b

(
πθ∗t−1

)) = 1

H

H∑
i=1

∣∣(x i
z − x0

z

)− (
x i

t−1 − x0
t−1

)∣∣
(22)

where {x i
t−1 − x0

t−1}Hi=1 is the behavior characterization asso-
ciated with the previous optimal policy πθ∗t−1

.
With the above settings, we present the results of all

tested methods implemented on the challenging locomotion
domains. Fig. 9 shows the received return per generation of
baselines and IW-IES, and Fig. 10 presents the received return
per generation of FS and the four variants of IW-IES. The
corresponding numerical results in terms of average received
return over all training generations are reported in Table VI.
Primarily, it is observed that IW-IES achieves more stable and
faster learning adaptation in these locomotion tasks than the
four baseline methods, which demonstrates the effectiveness
of our method for addressing incremental learning problems
in Mujoco locomotion domains.

Next, the four variants of IW-IES usually exhibit much
faster learning adaptation than FS, especially in the early
stage. The phenomenon indicates that the locomotion skills
learned in the original environment can benefit the new
learning process a lot. It also demonstrates the effectiveness
of the proposed incremental learning mechanism, that is, the
previously learned policy empirically performs better than a

TABLE VI

AVERAGE RECEIVED RETURN OVER ALL GENERATIONS OF

BASELINES, FS, AND FOUR VARIANTS OF IW-IES ON
MUJOCO LOCOMOTION TASKS

randomly initialized one because it has learned some of the
feature representations of the state–action space. Furthermore,
IW-IES-N, IW-IES-Qu, and IW-IES-Mix always exhibit faster
learning adaptation than CA. It verifies that using either
instance novelty or instance quality as the weighting metric
can already enhance the incremental learning performance and
enable significantly rapid learning adaptation. In Mujoco loco-
motion domains, the weighting metric using instance quality
can better boost the incremental learning performance than
using instance novelty, and using the mixing variant usually
leads to the best learning adaptation to these challenging
dynamic environments. By the instance weighting mechanism
that emphasizes new knowledge, IW-IES rapidly guides the
policy toward regions of parameter space that better fit in the
new environment. In summary, the results demonstrate that
IW-IES is also capable of facilitating learning adaptation to

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

stochastic dynamic environments for these high-dimensional
locomotion tasks.

V. CONCLUSION

ES algorithms are recently shown to be capable of solving
challenging, high-dimensional RL tasks, while being much
faster with many CPUs due to better parallelization. In this
article, we investigate incremental ES algorithms for RL in
dynamic environments. We hybridize an instance weight-
ing mechanism with ES to enable rapid learning adaptation
while preserving scalability of ES. During parameter updating,
higher weights are assigned to instances that contain more
new knowledge, thus encouraging the search distribution to
move toward new promising areas in the parameter space.
The designed weighting metrics, instance novelty and instance
quality, “reinforce” the evolutionary process that searches for
new well-behaving policies. The proposed IW-IES algorithm
is tested on traditional navigation and challenging locomotion
domains with varying configurations. Experiments verify that
IW-IES is capable of significantly facilitating learning adap-
tation to various dynamic environments.

Thus, we provide an option for not only taking advantage
of the scalability of ES but also pursuing better learning adap-
tation to dynamic environments from an incremental learning
perspective. The latter scenario is supposed to hold for most
challenging, real-world domains that ES/RL practitioners will
wish to tackle in the future. Our future work will focus on
learning adaptation in more challenging dynamic environments
where the state–action space changes over time or learning in
more intensively changing environments (e.g., change between
consecutive learning episodes). Automatic detection and iden-
tification of environmental change is also a crucial direction to
be addressed. Another insightful direction would be to conduct
an empirical investigation on systematically comparing the
derivative-free ES algorithms and the derivative-based opti-
mization methods [55] in RL domains or to develop possible
off-policy solutions for incorporating the experience replay
mechanism [56] with ES.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[2] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Trans. Neural Netw., vol. 18, no. 4,
pp. 973–992, Jul. 2007.

[3] B. Luo, D. Liu, T. Huang, and D. Wang, “Model-free optimal tracking
control via critic-only Q-learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 10, pp. 2134–2144, Oct. 2016.

[4] Y. Yu, S.-Y. Chen, Q. Da, and Z.-H. Zhou, “Reusable reinforcement
learning via shallow trails,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2204–2215, Jun. 2018.

[5] H. Li, Z. Qichao, and D. Zhao, “Deep reinforcement learning-based
automatic exploration for navigation in unknown environment,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2064–2076,
Jun. 2020.

[6] J.-A. Li et al., “Quantum reinforcement learning during human decision-
making,” Nature Hum. Behav., vol. 4, no. 3, pp. 294–307, Mar. 2020.

[7] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[9] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1329–1338.

[10] V. Heidrich-Meisner and C. Igel, “Hoeffding and Bernstein races for
selecting policies in evolutionary direct policy search,” in Proc. 26th
Annu. Int. Conf. Mach. Learn. (ICML), 2009, pp. 401–408.

[11] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” IEEE Trans. Comput. Intell. AI Games, vol. 9, no. 1,
pp. 25–41, Mar. 2017.

[12] H.-G. Beyer, The Theory of Evolution Strategies. Berlin, Germany:
Springer, 2013.

[13] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” 2017,
arXiv:1703.03864.

[14] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune,
“Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 5027–5038.

[15] S. Khadka and K. Tumer, “Evolution-guided policy gradient in rein-
forcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 1194–1206.

[16] G. Liu et al., “Trust region evolution strategies,” in Proc. AAAI Conf.
Artif. Intell., 2019, vol. 33, no. 1, pp. 4352–4359.

[17] L. Zhou, P. Yang, C. Chen, and Y. Gao, “Multiagent reinforcement
learning with sparse interactions by negotiation and knowledge transfer,”
IEEE Trans. Cybern., vol. 47, no. 5, pp. 1238–1250, May 2017.

[18] M. A. K. Jaradat, M. Al-Rousan, and L. Quadan, “Reinforcement
based mobile robot navigation in dynamic environment,” Robot. Comput.
Integr. Manuf., vol. 27, no. 1, pp. 135–149, Feb. 2011.

[19] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environ-
ments through meta-reinforcement learning,” in Proc. Int. Conf. Learn.
Represent., 2019.

[20] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer
learning-based dynamic multiobjective optimization algorithms,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 501–514, Aug. 2018.

[21] S. Yang and X. Yao, “Population-based incremental learning with
associative memory for dynamic environments,” IEEE Trans. Evol.
Comput., vol. 12, no. 5, pp. 542–561, Oct. 2008.

[22] J. Pan, X. Wang, Y. Cheng, and Q. Yu, “Multisource transfer double
DQN based on actor learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2227–2238, Jun. 2018.

[23] Z. Wang, C. Chen, H.-X. Li, D. Dong, and T.-J. Tarn, “Incremental
reinforcement learning with prioritized sweeping for dynamic environ-
ments,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 2, pp. 621–632,
Apr. 2019.

[24] Z. Wang, H.-X. Li, and C. Chen, “Incremental reinforcement learning
in continuous spaces via policy relaxation and importance weighting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 1870–1883,
Jun. 2020.

[25] Z. Wang, C. Chen, and D. Dong, “Lifelong incremental rein-
forcement learning with online Bayesian inference,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Feb. 11, 2021, doi:
10.1109/TNNLS.2021.3055499.

[26] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 3320–3328.

[28] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream
data,” IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901–1914,
Dec. 2011.

[29] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[30] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” Int. J. Comput. Vis., vol. 77, nos. 1–3,
pp. 125–141, 2008.

[31] D. Kulić, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental learning of
full body motion primitives and their sequencing through human motion
observation,” Int. J. Robot. Res., vol. 31, no. 3, pp. 330–345, 2012.

[32] Z. Wang and H.-X. Li, “Incremental spatiotemporal learning for online
modeling of distributed parameter systems,” IEEE Trans. Syst., Man,
Cybern. Syst., vol. 49, no. 12, pp. 2612–2622, Dec. 2019.

[33] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[34] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and
J. Schmidhuber, “Natural evolution strategies,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 949–980, 2014.

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2021.3055499

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: INSTANCE WEIGHTED INCREMENTAL EVOLUTION STRATEGIES FOR REINFORCEMENT LEARNING 15

[35] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[36] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 23–30.

[37] F. Muratore, M. Gienger, and J. Peters, “Assessing transferability from
simulation to reality for reinforcement learning,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 4, pp. 1172–1183, Apr. 2021.

[38] M. Sheckells, G. Garimella, S. Mishra, and M. Kobilarov, “Using
data-driven domain randomization to transfer robust control policies to
mobile robots,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 3224–3230.

[39] T. Chen, A. Murali, and A. Gupta, “Hardware conditioned policies for
multi-robot transfer learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 9333–9344.

[40] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” in Proc.
Robot., Sci. Syst., Cambridge, MA, USA, Jul. 2017.

[41] W. Yu, C. K. Liu, and G. Turk, “Policy transfer with strategy optimiza-
tion,” in Proc. Int. Conf. Learn. Represent., 2019.

[42] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1–8.

[43] M. Andrychowicz et al., “Learning dexterous in-hand manipulation,”
Int. J. Robot. Res., vol. 39, no. 1, pp. 3–20, 2020.

[44] B. M. Lake, T. D. Ullman, J. B. Tenebaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behav.
Brain Sci., vol. 40, p. e253, 2017. [Online]. Available:
https://www.cambridge.org/core/journals/behavioral-and-brain-
sciences/article/building-machines-that-learn-and-think-like-
people/A9535B1D745A0377E16C590E14B94993#

[45] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[46] A. Gajewski, J. Clune, K. O. Stanley, and J. Lehman, “Evolvability ES:
Scalable and direct optimization of evolvability,” in Proc. Genet. Evol.
Comput. Conf., Jul. 2019, pp. 107–115.

[47] R. Houthooft et al., “Evolved policy gradients,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 5400–5409.

[48] X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and Y. Tang,
“ES-MAML: Simple Hessian-free meta learning,” in Proc. Int. Conf.
Learn. Represent., 2020.

[49] K. Kawaguchi, “Deep learning without poor local minima,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 586–594.

[50] P. Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Trans. Evol. Comput.,
vol. 11, no. 2, pp. 265–286, Apr. 2007.

[51] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evol. Comput., vol. 19, no. 2, pp. 189–223,
Jun. 2011.

[52] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2012, pp. 5026–5033.

[53] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Proc. Adv. Neural Inf. Process.
Syst., 1996, pp. 1038–1044.

[54] A. Tirinzoni, A. Sessa, M. Pirotta, and M. Restelli, “Importance
weighted transfer of samples in reinforcement learning,” in Proc. Int.
Conf. Mach. Learn., vol. 80, 2018, pp. 4936–4945.

[55] M. Plappert et al., “Parameter space noise for exploration,” in Proc. Int.
Conf. Learn. Represent., 2018.

[56] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learn. Represent., 2016.

Zhi Wang (Member, IEEE) received the B.E. degree
in automation from Nanjing University, Nanjing,
China, in 2015, and the Ph.D. degree in machine
learning from the Department of Systems Engineer-
ing and Engineering Management, City University
of Hong Kong, Hong Kong, China, in 2019.

He had a visiting position at the University of
New South Wales, Canberra, ACT, Australia. He is
currently an Assistant Professor with the Depart-
ment of Control and Systems Engineering, Nanjing
University. His current research interests include

reinforcement learning, machine learning, and robotics.

Chunlin Chen (Senior Member, IEEE) received
the B.E. degree in automatic control and the Ph.D.
degree in control science and engineering from the
University of Science and Technology of China,
Hefei, China, in 2001 and 2006, respectively.

He was with the Department of Chemistry, Prince-
ton University, Princeton, NJ, USA, from September
2012 to September 2013. He had visiting positions
at the University of New South Wales, Canberra,
ACT, Australia, and the City University of Hong
Kong, Hong Kong. He is currently a Professor and

the Head of the Department of Control and Systems Engineering, School
of Management and Engineering, Nanjing University, Nanjing, China. His
current research interests include machine learning, intelligent control, and
quantum control.

Dr. Chen serves as the Chair for the Technical Committee on Quantum
Cybernetics, IEEE Systems, Man and Cybernetics Society.

Daoyi Dong (Senior Member, IEEE) received the
B.E. degree in automatic control and the Ph.D.
degree in engineering from the University of Science
and Technology of China, Hefei, China, in 2001 and
2006, respectively.

He was an Alexander von Humboldt Fellow at
AKS, University of Duisburg-Essen, Duisburg, Ger-
many. He was with the Institute of Systems Sci-
ence, Chinese Academy of Sciences, Beijing, China,
and Zhejiang University, Hangzhou, China. He had
visiting positions at Princeton University, NJ, USA;

RIKEN, Wako, Japan; and The University of Hong Kong, Hong Kong. He is
currently a Scientia Associate Professor at the University of New South Wales,
Canberra, ACT, Australia. His research interests include quantum control and
machine learning.

Dr. Dong received the ACA Temasek Young Educator Award by the Asian
Control Association. He was a recipient of the International Collaboration
Award and the Australian Post-Doctoral Fellowship from the Australian
Research Council and a Humboldt Research Fellowship from the Alexander
von Humboldt Foundation of Germany. He is a Member-at-Large, Board of
Governors, and the Associate Vice President for Conferences and Meetings,
IEEE Systems, Man and Cybernetics Society. He served as an Associate Editor
for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYSTEMS from 2015 to 2021. He is also an Associate Editor of the
IEEE TRANSACTIONS ON CYBERNETICS and a Technical Editor of the
IEEE/ASME TRANSACTIONS ON MECHATRONICS.

Authorized licensed use limited to: Nanjing University. Downloaded on March 31,2022 at 01:52:04 UTC from IEEE Xplore. Restrictions apply.

