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Incremental Reinforcement Learning in Continuous
Spaces via Policy Relaxation and

Importance Weighting
Zhi Wang , Student Member, IEEE, Han-Xiong Li , Fellow, IEEE, and Chunlin Chen , Member, IEEE

Abstract— In this paper, a systematic incremental learning
method is presented for reinforcement learning in continuous
spaces where the learning environment is dynamic. The goal is to
adjust the previously learned policy in the original environment to
a new one incrementally whenever the environment changes.
To improve the adaptability to the ever-changing environment,
we propose a two-step solution incorporated with the incremental
learning procedure: policy relaxation and importance weighting.
First, the behavior policy is relaxed to a random one in the
initial learning episodes to encourage a proper exploration in
the new environment. It alleviates the conflict between the new
information and the existing knowledge for a better adaptation
in the long term. Second, it is observed that episodes receiving
higher returns are more in line with the new environment,
and hence contain more new information. During parameter
updating, we assign higher importance weights to the learning
episodes that contain more new information, thus encouraging
the previous optimal policy to be faster adapted to a new one
that fits in the new environment. Empirical studies on continuous
controlling tasks with varying configurations verify that the
proposed method achieves a significantly faster adaptation to
various dynamic environments than the baselines.

Index Terms— Continuous spaces, dynamic environments,
importance weighting, incremental reinforcement learning (RL),
policy relaxation.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1] addresses the prob-
lem of how an autonomous active agent can learn to

approximate an optimal behavioral policy that maps states to
actions to maximize the long-term cumulative reward while
interacting with its environment in a trial-and-error manner.
Traditional RL algorithms, such as dynamic programming [2],

Manuscript received January 2, 2019; revised May 4, 2019; accepted
July 3, 2019. Date of publication August 2, 2019; date of current version
June 2, 2020. This work was supported in part by the General Research
Fund Project from the Research Grant Council of Hong Kong SAR under
Grant CityU 11210719, in part by the Project from the City University of
Hong Kong under Grant 7005092, in part by the National Key Research
and Development Program of China under Grant 2016YFD0702100, and in
part by the Fundamental Research Funds for the Central Universities under
Grant 011814380035. (Corresponding author: Han-Xiong Li.)

Z. Wang and C. Chen are with the Department of Control and Sys-
tems Engineering, School of Management and Engineering, Nanjing Uni-
versity, Nanjing 210093, China (e-mail: njuwangzhi@gmail.com; clchen@
nju.edu.cn).

H.-X. Li is with the Department of Systems Engineering and Engineering
Management, City University of Hong Kong, Hong Kong, and also with the
State Key Laboratory of High Performance Complex Manufacturing, Central
South University, Changsha 410083, China (e-mail: mehxli@cityu.edu.hk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2927320

Monte Carlo methods [3], and temporal difference learning [4],
have been widely used in intelligent control and industrial
applications [5]–[8]. To overcome the “curse of dimensional-
ity,” function approximation techniques, such as least-squares
policy iteration [9] and fitted Q-iteration [10], [11], are usu-
ally employed for Markov decision processes (MDPs) with
continuous spaces. The recent development of combining
advances in deep learning for learning feature representations
makes RL algorithms practical for extremely high-dimensional
applications, such as Atari games [12], the game of Go [13],
and robot locomotion [14].

In the conventional RL setting, a stationary task is consid-
ered, where the environment remains unchanged during the
entire learning process. However, in real-world applications,
the environments are often dynamic, where the reward func-
tions, state transition functions, or state-action spaces may
change over time, such as for robot navigation [15] and multi-
agent RL (MARL) problems [16]. Transfer RL [17], [18] can
circumvent the necessity for repeatedly retraining the learning
system by transferring the experience gained in a set of source
tasks to help the learning performance in a related but different
task. However, it requires repeatedly accessing and processing
a potentially very large set of source tasks to provide a good
knowledge base for the downstream target task.

Throughout this paper, we consider the dynamic environ-
ment as a sequence of stationary tasks on a certain timescale
where each task that we target to solve corresponds to the
specific environment that is stationary during the associated
time period. As intelligent agents are becoming more ubiqui-
tous nowadays, an increasing number of real-world scenarios
requires new learning mechanisms that are amenable for a
fast adaptation to environments that may drift or change
from their nominal situations. Many of today’s data-intensive
computing applications require the autonomous RL agent to
be capable of adapting its behavior in an incremental manner
as the environment changes around it, continuously utilizing
previous knowledge to benefit the future decision-making
process. Thus, the concept of “incremental learning” emerges
by incrementally adjusting the previously learned policy to a
new one that fits in the new environment whenever the envi-
ronment changes, which offers an appealing alternative for a
fast adaptation to dynamic environments. Such an incremental
adaptation is crucial for the intelligent systems operating in
the real world, where the changing factors and unexpected
perturbations are the norm.
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Although incremental learning has been widely investigated
for decades in the machine learning and data mining com-
munity [19]–[24], a few results are reported until recently
regarding incremental learning for RL problems. In the RL
community, Wang et al. [25] first proposed an incremental
learning algorithm for RL in dynamic environments where
the reward functions might change over time. Nevertheless,
the incremental algorithm in [25] only worked in RL problems
with a discrete state-action space, since it involved a tabular
form of comparing reward functions and the prioritized sweep-
ing process. For RL in continuous spaces, we mainly focus on
methods that explicitly update a representation/approximation
of a value function, a policy, or both [26]. The design of a
feasible incremental learning method should be capable of
incorporating with the function approximation framework.

In the incremental learning setting [25], when the environ-
ment changes, one can directly initialize the parameters of
a function approximation from the previous optima that have
learned some of feature representations (e.g., nodes in a neural
network) of the state-action space in the original environment.1

However, the previous optimum of parameters may be a local
one that has been overfitted to the original environment, espe-
cially when using a nonlinear function approximator such as
the neural network. When updating parameters by interacting
with the new environment, the learning agent tends to generate
policies that perform well in the original environment and
may not discover alternative policies with potentially larger
payoffs, i.e., it can get stuck in local optima. Therefore,
directly learning based on the existing knowledge may hinder
the RL agent to properly explore and further adapt to the new
environment. For example, in a navigation task, a robot has
learned how to reach a goal in the south direction. When the
goal changes to the north, the robot still tends to head south
before it can slowly adapt to the new environment.

This paper investigates the incremental RL problem in
continuous spaces, which attempts to achieve a fast adaptation
to dynamic environments. After initializing parameters from
the original environment, we propose to improve the adapt-
ability to the new environment by using a two-step solution:
policy relaxation and importance weighting. In the first step,
the learning agent is forced to follow a relaxed random
policy for a small number of episodes to properly explore
the new environment. Intuitively, policy relaxation alleviates
the conflict between the new information and the existing
knowledge. In the second step, we observe that episodes
receiving higher returns are supposed to be more in line with
the new environment, and hence contain more new informa-
tion. During parameter updating, we assign higher importance
weights to the episodes containing more new information,
thus encouraging the previous optimal policy to be faster
adjusted to a new one that fits in the new environment. A good
property of the formulated incremental learning procedure is

1Similar to the case in the computer vision community [27], where features
of neural networks learned on the common ImageNet data set can provide
an empirical initialization for helping the general downstream tasks; or the
case in the natural language processing community [28], where the pretrained
word embeddings from a large source corpora have an outsized impact on
practice and are used in most state-of-the-art models.

that only the learned function approximation is needed for the
new environment, circumventing the necessity for repeatedly
accessing, or processing a potentially large set of source tasks.

We use the policy search algorithm with a nonlinear function
approximation [26], [29] to handle challenging RL tasks with
continuous state-action spaces. The policy is represented by
a (deep) neural network, and its parameters are optimized
using the gradient descent method. Experiments are con-
ducted under various dynamic environments on continuous
control tasks ranging from classical 2-D navigation to com-
plex MuJoCo robot locomotion. The results show that the
proposed method achieves a significantly faster adaptation to
various dynamic environments than the baselines. In summary,
the contribution of this paper lies in the following aspects.

1) We introduce a systematic incremental learning method
for RL in continuous spaces where the learning environ-
ment is dynamic.

2) We propose a policy relaxation mechanism to encourage
the learning agent to properly explore the new environ-
ment for a better adaptation in the long term.

3) We incorporate an importance weighting mechanism with
the policy iteration process to encourage a faster adapta-
tion to dynamic environments.

The rest of this paper is organized as follows. Section II
presents the research background including RL in continuous
spaces and the related work. In Section III, the framework of
the proposed method is presented, followed by specific mech-
anisms and implementation details. Experiments on several
classical 2-D navigation tasks and complex Mujoco locomo-
tion tasks are conducted in Section IV. Section V presents
concluding remarks.

II. BACKGROUND

A. Reinforcement Learning in Continuous Spaces
1) Markov Decision Process: RL is commonly stud-

ied based on the MDP framework. An MDP is a tuple
〈S, A, T, R, γ 〉, where S is the set of states, A is the set
of actions, T : S × A × S → [0, 1] is the state transition
probability, R : S × A → R is the reward function, and γ
is the discounting factor. A policy is defined as a function
π : S×A→ [0, 1], a probability distribution that maps actions
to states, and

∑
a∈A π(a|s) = 1,∀s ∈ S. The goal of RL is to

find an optimal policy π∗ that maximizes the expected long-
term return J (π)

J (π) = Eτ∼π(τ)[r(τ )] = Eτ∼π(τ)

[ ∞∑
t=0

γ t rt

]
(1)

where τ = (s0, a0, s1, a1, . . .) is the learning episode,
π(τ) = p(s0)�

∞
t=0π(at |st )p(st+1|st , at ), rt is the instant

reward received when executing the action at in the state st .
2) Policy Gradient: Following the state-of-the-art bench-

mark [14], we employ the policy gradient approach to handle
challenging tasks with continuous state and action spaces.
Policy gradient is a branch of RL algorithms that approximate
and learn the policy directly by maximizing the return. The
policy is often represented as a parameterized approximation
πθ using a function f (·|θ). In deep RL (DRL), f is a
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deep neural network (DNN) and θ denotes the weights of
the network. The Gibbs distribution is commonly used for a
discrete action space

πθ (i |s) = exp( fi (s|θ))∑
j∈A(s) exp( f j (s|θ)) (2)

and the Gaussian distribution is usually used for a continuous
action space

πθ (a|s) = 1√
2πσ

exp

(
− 1

σ 2 ( f (s|θ)− a)2
)
. (3)

To measure the quality of the policy π , the direct objective
function can be equivalently rewritten as

J (θ) = Eτ∼πθ (τ )[r(τ )] =
∫
τ
πθ (τ )r(τ ) dτ (4)

where r(τ ) =∑∞
t=0 γ

trt is the return of episode τ .
Policy gradient searches for a local maximum by ascend-

ing the parameters following the gradient of the policy
with respect to the expected return. By the policy gradient
theorem [1], [30], the basic policy gradient method employs
the direct gradient of the objective

∇θ J (θ) = Eτ∼πθ (τ )

[∇θ logπθ (τ )r(τ )
]

=
∫
τ
∇θ logπθ (τ )r(τ )πθ (τ ) dτ (5)

and then the parameters θ are updated iteratively by

θ ← θ + α∇θ J (θ) (6)

until it converges.

B. Related Work
Traditional RL algorithms focus on a fixed task with a

stationary environment. However, we often face the problem
of learning in a dynamic environment in practice [25]. For
example, the geographic feature in a navigation task may
change slightly over time, or the mission to be accomplished
by a humanoid robot can vary for different applications.
In these cases, the learning agent needs to adjust the previous
behavior policy incrementally to adapt to the ever-changing
environment.

Regarding dynamic environments, a particularly related
setting is the transfer RL [17] as shown in Fig. 1(a). As a
combination of transfer learning [18] and RL, it addresses the
cross-task generalization problem, which reuses the knowledge
from a set of related source domains to help the learning task
in the target domain. Different types of knowledge can be
transferred, such as sample instances [31], policies [32], and
value functions [33]. With the advance in DRL, the researchers
focus more on how to transfer the knowledge with the use
of DNNs [34]–[36]. Other related settings include the multi-
task RL [37], [38] and the meta RL [29], [39]. As shown
in Fig. 1(b), multi-task RL aims to solve a fixed set of tasks
simultaneously based on the assumption that the tasks share
some similarities in components such as the reward structure,
the transition dynamics, or the value function. Meta RL is a
very new issue that has been studied recently. It trains a model

Fig. 1. Intuitive illustration of (a) transfer RL, (b) multi-task RL, and
(c) incremental RL.

on a variety of learning tasks to provide a good initialization,
as called “meta,” for general unseen tasks.

We note that the above-related work requires repeatedly
accessing and processing a potentially very large set of source
tasks to provide a good knowledge base for the downstream
target task. Hence, we argue that incremental learning is
a more feasible alternative for handling the learning adap-
tation in dynamic environments. As shown in Fig. 1(c),
incremental RL continually adjusts the previously learned
policy to a new one whenever the environment changes.
Incremental learning has been widely addressed in machine
learning and intelligent control communities to cope with
learning tasks where the training samples become available
over time or the learning environment is ever-changing [24],
including unsupervised learning [19], supervised learning [40],
machine vision [21], evolutionary algorithms [22], system
modeling [41], and human–robot interaction [23]. In the RL
community, Wang et al. [25] first proposed an incremental
learning algorithm for dynamic environments where the reward
functions might change over time. However, it involved a
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tabular form of comparing the reward functions and the prior-
itized sweeping process, and hence could only be applied for
RL problems with a discrete state-action space. In this paper,
we aim at designing a feasible incremental learning method
that can incorporate the function approximation framework in
continuous spaces.

III. INCREMENTAL REINFORCEMENT

LEARNING IN CONTINUOUS SPACES

In this section, we first formulate the incremental RL
problem in continuous spaces under a dynamic environment.
Then, we introduce the proposed two mechanisms of pol-
icy relaxation and importance weighting in turn. Finally,
we give the integrated algorithm based on the above-mentioned
implementations.

A. Problem Formulation
We consider the dynamic environment as a sequence of

stationary tasks on a certain timescale where each task cor-
responds to the specific type of environment characteristics
during the associated time period. Assume there is a space
of MDPs, M, and an infinite underlying distribution, D, over
time in M. An RL agent interacts with the dynamic envi-
ronment D = {M1, . . . ,Mt−1,Mt , . . .}, where each Mt ∈M
denotes the specific MDP that is stationary during the t th time
period. We assume, in this paper, that the environment changes
only in the reward and state transition functions, but keeps the
same state and action spaces.

Suppose that during the (t − 1)th time period, the agent
learned the optimal parameters θ∗t−1 with respect to the policy
approximation

θ∗t−1 = arg max
θ∈Rd

JMt−1(πθ ). (7)

When the environment changes to Mt at the tth time period,
the goal of incremental learning is to adjust the existing
knowledge of θ∗t−1 to a new one θ∗t that can achieve a
maximum return in the new environment

θ∗t = arg max
θ∈Rd

JMt (πθ ) (8)

with initialization of θ t ← θ∗t−1. Continually, the agent
incrementally adjusts the existing knowledge to a new one,
(θ∗t+1, θ

∗
t+2, . . .), whenever the environment changes.

Initializing policy parameters from the previous optimum
empirically benefits the learning process when starting to
interact with the new environment. However, the previous
optimum may be a local one that has been overfitted to
the original environment, particularly when using a nonlinear
function approximator such as the (deep) neural network.
This potential drawback in the incremental initialization may
degrade the performance of the new learning process in the
long term. Unlike in supervised learning with DNNs, wherein
local optima are not thought to be a problem [42], the training
data in RL are determined by the actions an agent takes.
In particular, in the on-policy case, the learning agent can
only use samples consistent with the current policy that is
being executed [43]. When the agent updates parameters from

the previous optimum, the training data for the algorithm will
be limited to those generated by policies that perform well in
the original environment. Thus, it may not properly explore the
new environment to discover alternate policies with potentially
larger payoffs, i.e., it can get stuck in local optima.

From the above insight, we design a two-step solution incor-
porated with the incremental learning procedure as: 1) using
policy relaxation to first encourage a proper exploration for
a better adaptation in the long term and 2) using importance
weighting to assign higher weights to episodes that contain
more new information, thus further encouraging the previous
optimal policy to be faster adapted to a new one that fits in the
new environment. The specific implementations are introduced
in Sections III-B–III-D.

B. Policy Relaxation
In the new environment Mt , the agent tends to visit a

small part of the whole state-action space when executing the
previously learned policy, thus probably leading to a local opti-
mum due to insufficient exploration. Hence, we propose a pol-
icy relaxation mechanism to encourage a proper exploration.
Specifically, in the k burn-in learning episodes, the agent is
forced to execute a relaxed policy where actions are randomly
selected from the available set. For better readability, let θ

denote the current parameters in Mt , and πθ be the policy
derived from θ . Regarding the number of learning episodes η,
the agent’s behavior policy πr is relaxed as

πr (a|s) =
{

Uniform(A(s)), η ≤ k
πθ (a|s), η > k

(9)

where A(s) is the set of discrete/continuous available actions
in the state s, Uniform(·) is the sampling function from a
uniform distribution, and k is a predetermined number of
burn-in episodes.

However, in the k burn-in episodes, we would encounter
the special difficulty due to a mismatch of distributions.
We would like samples drawn from the distribution of the
estimated policy πθ but we have only samples drawn from
the distribution of another behavior policy πr . This will
lead to an unfavorable bias compared to the conventional
RL setting [44]. To make the policy relaxation mechanism
feasible, we adopt the classical Monte Carlo technique [45],
importance sampling [46], to handle this kind of mismatch.

Recall the goal of RL in (1), and r(τ ) = ∑∞
t=0 γ

trt is
the received return of episode τ . In the k burn-in episodes
with the relaxed policy, we need to estimate the expectation
of r(τ ) under the distribution of τ ∼ πθ (τ ), while we are
given samples from a different behavior policy τ ∼ πr (τ ).
The observation of importance sampling is

Eτ∼πθ (τ )[r(τ )] =
∫
τ
πθ (τ )r(τ ) dτ

=
∫
τ

πθ (τ )

πr (τ )
r(τ )πr (τ ) dτ

= Eτ∼πr (τ )

[
πθ (τ )

πr (τ )
r(τ )

]
. (10)

Given an episode τ generated by πr , the return regarding
the current parameters θ should be multiplied with a ratio,
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Algorithm 1 Policy Relaxation With Importance Sampling
Input: Number of burn-in episodes k;

learning rate α; batch size m
Output: Optimal policy parameters θ∗

1 Initialize the number of learning episodes: η← 0
2 while not converged do
3 if η ≤ k then
4 πr (a|s) = Uniform(A(s)),∀s
5 Sample m episodes from πr : τ i ∼ πr

6 ∇θ J (θ) =∑m
i=1

πθ (τ
i )

πr (τ i )
∇θ logπθ (τ

i )r(τ i )

7 else
8 Sample m episodes from πθ : τ i ∼ πθ

9 ∇θ J (θ) =∑m
i=1 ∇θ logπθ (τ

i )r(τ i )
10 end
11 θ ← θ + α∇θ J (θ)
12 η← η + m
13 end

πθ (τ )/πr (τ ), to ensure that the estimated policy is unbiased
compared to the conventional RL setting. In the policy gradient
step, the gradient ascent rule in (5) is rewritten as

∇θ J (θ) = Eτ∼πr (τ )

[
πθ (τ )

πr (τ )
∇θ logπθ (τ )r(τ )

]
= Eτ∼πr (τ )

[ ∞∑
t=0

∇θ logπθ (at |st )

(
t∏

t ′=0

πθ (at ′ |st ′)

πr (at ′ |st ′)

)

×
( ∞∑

t ′=t

γ t ′−t rt ′

)]
. (11)

Together, the implementation of policy relaxation with impor-
tance sampling is presented in Algorithm 1.

Remark 1: Policy relaxation is in a similar spirit to the
classical ε-greedy exploration strategy in the way that the
behavior policy is allowed to generate random actions to
collect samples, which, in turn, are utilized to update the
learning system (e.g., a value function, a policy function,
or both). The ε-greedy technique is usually employed in
value function-based RL algorithms such as the classical
Q-learning [4] and the state-of-the-art deep Q-network [12].
In this paper, we adopt the spirit of ε-greedy to encourage
a proper exploration for the implemented policy gradient
approach. Moreover, we employ the importance sampling
technique to make such an exploration scheme feasible under
the policy-based RL architecture.

C. Importance Weighting
The policy initialized from the original environment empir-

ically achieves a moderate performance in the new envi-
ronment, especially after a very small number of update
steps, because the previous optimum of policy parameters has
learned some of feature representations (e.g., nodes in a neural
network) of the state-action space. Fig. 2 shows a simple
example of the 2-D navigation task in a dynamic environment
where the goal changes. In Fig. 2(a), the episode τt−1, receiv-
ing the highest return, is generated by the learned optimal

Fig. 2. Simple example of the 2-D navigation task in a dynamic environment
where the goal changes. Ṡ is the start point and Ġ is the goal point.
τ is one learning episode generated by the associated policy π . (a) Original
environment Mt−1. (b) New environment Mt .

policy πθ∗t−1
in the original environment Mt−1. Then, during

the t th period shown in Fig. 2(b), the environment changes to
Mt where the goal moves to a new position. Suppose that τr

is one learning episode generated by a randomly initialized
policy πran , and τ 1

t and τ 2
t are two episodes generated by the

current policy πθ t that is initialized from πθ∗t−1
. Consistent with

the above-mentioned observation, episodes generated by πθ t

tend to receive higher returns than those generated by πran .
We can see that initializing parameters from the original

environment empirically benefit the learning process when
starting to interact with the new environment. However,
a potential drawback in this initialization may degrade the
agent’s performance in the long term. As discussed above,
in the new environment, the initial set of policy parame-
ters tends to be a local optimum that has been overfitted
to the original environment. For highly nonlinear function
approximators such as DNNs, the parameter iterate may move
from one local basin to another, since the optimization can
suffer from pathological curvature [47]. Hence, adjusting the
previous optimum to a new one under a new data distribution
could get stuck in bad local basins. Moreover, every critical
point that is not a global optimum is a saddle point [42], which
can significantly slow down training. In the beginning, since
the current policy has not been adapted to the new environment
yet, the agent still tends to execute policies that are close to the
previous optimal one, and hence, the parameters are updated
in the adjacent regions of the previous optimum. Therefore,
we need to encourage the policies to move toward regions of
parameter space that better fits in the new environment, which
may be far away from the previous optimum.

Due to the environment change, the two example episodes
in Fig. 2(b), τ 1

t and τ 2
t , cannot obtain a satisfactory learn-

ing performance yet in the new environment. Nevertheless,
compared to τ 1

t , the episode τ 2
t is closer to the new optimal

path and receives a higher return in the new environment.
Empirically, it indicates that episodes receiving higher returns
are more in line with the new environment, i.e., containing
more new information. Based on this insight, we propose to
use an importance weighting mechanism: during parameter
updating, we assign higher importance weights to episodes that
contain more new information, thus encouraging the previous
optimum of parameters to be faster adjusted to a new one
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Algorithm 2 Importance Weighted Policy Gradient
Input: Batch size m; learning rate α;

increment of smoothness constant 
u
Output: Optimal policy parameters θ∗

1 Initialize the smoothness constant u
2 while not converged do
3 Sample m episodes from the behavior policy: τ i ∼ πθ

4 Calculate the importance weight w(τ i ) for each
episode using (12)

5 ∇θ J (θ) =∑m
i=1 w(τ

i )∇θ logπθ (τ
i )r(τ i )

6 θ ← θ + α∇θ J (θ)
7 u ← u +
u
8 end

that fits in the new environment. It may be helpful for the
algorithm to escape from those “deceptive” regions adjacent
to the parameter space of the previous optimum.

Motivated by the above observation, the importance weight
w(τ i ) assigned to an episode τ i can be calculated using the
received return r(τ i ) as

w(τ i ) = 1

ρ
(r(τ i )+ u), i = 1, . . . ,m (12)

where m is the batch size, u is a smoothness constant for
preventing the weight of an episode with a small return
being zero, and ρ is a normalization constant making the
average of weights from a minibatch equal to 1. When u
gets larger, all w′s will be close to 1, and this weighting
metric reduces to uniform weighting. In practice, we increase
the smoothness constant u by a small increment 
u every
iteration when the policy parameters are updated. As the
learning proceeds, the effect of importance weighting is grad-
ually weakening, thus the policy gradient process tends to be
unbiased eventually compared to the conventional RL setting.
Correspondingly, the gradient ascent rule in (5) is rewritten as

∇θ J (θ)=Eτ∼πθ (τ )

[
w(τ)∇θ logπθ (τ )r(τ )

]
=Eτ∼πθ (τ )

[ ∞∑
t=0

w(τ)∇θ logπθ (at |st )

( ∞∑
t ′=t

γ t ′−trt ′

)]
.

(13)

Together, the algorithm of importance weighted policy gradi-
ent is presented in Algorithm 2.

D. Integrated Algorithm
With the above-mentioned policy relaxation and importance

weighting mechanisms, Algorithm 3 presents the integrated
incremental RL method in continuous spaces for dynamic
environments. The agent is interacting with a dynamic environ-
ment D = {M1,M2, . . .}. In the first time period, we learned
the first policy network from scratch using the canonical policy
gradient method, as shown in Lines 2–7. Then, during a later
tth (t ≥ 2) time period, we initialize the policy parameters
using the learned parameters that are optimal during the previ-
ous time period in Line 11. Empirically, this step circumvents
the necessity for repeatedly retraining the policy network

Algorithm 3 Incremental RL in Continuous Spaces for
Dynamic Environments

Input: Dynamic environment D = {M1,M2, . . .};
current time period t (t ≥ 1);
learning rate α; batch size m;
number of burn-in episodes k;
increment of smoothness constant 
u

Output: Optimal policy parameters θ∗t for Mt

1 if t equals to 1 then
2 Randomly initialize θ t

3 while not converged do
4 Sample m episodes: τ i ∼ πθ t , i = 1, . . . ,m
5 ∇θ t J (θ t ) =∑m

i=1 ∇θ t logπθ t (τ
i )r(τ i )

6 θ t ← θ t + α∇θ t J (θ t )
7 end
8 else
9 Initialize the learning episode: η← 0

10 Initialize the smoothness constant u
11 Initialize: θ t ← θ∗t−1
12 while not converged do
13 if η ≤ k then
14 πr (a|s) = Uniform(A(s)),∀s
15 Sample m episodes from πr : τ i ∼ πr

16 Calculate the importance weights w(τ i ) for
each episode using (12)

17 ∇θ t J (θ t ) =∑m
i=1 w(τ

i )
πθ t (τ

i )

πr (τ i )
∇θ t logπθ t (τ

i )r(τ i )

18 else
19 Sample m episodes from πθ t : τ

i ∼ πθ t

20 Calculate the importance weights w(τ i ) for
each episode using (12)

21 ∇θ t J (θ t ) =∑m
i=1 w(τ

i )∇θ t logπθ t (τ
i )r(τ i )

22 end
23 θ t ← θ t + α∇θ t J (θ t )
24 η← η + m
25 u ← u +
u
26 end
27 end

from scratch whenever the environment changes, because the
previous policy network has learned some of the features
of the state-action space. In Line 14, the policy relaxation
mechanism is applied to generate more diversified samples
to encourage a proper exploration in the k burn-in episodes.
The importance sampling technique utilized to ensure the
estimated policy is unbiased compared to the conventional
RL setting in Line 17. In Lines 16 and 20, an importance
weight is assigned to each learning episode, aiming at escaping
from bad local optima and a faster adaptation to the new
environment. Next, the gradient of the policy network is
computed in Lines 17 and 21, and the parameters are updated
in Lines 23–25 till convergence. Finally, the optimal policy
πθ∗t is obtained for the new environment Mt . Correspondingly,
the entire process of the integrated algorithm is illustrated by
a flow diagram as shown in Fig. 3.
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Fig. 3. Flow diagram of the integrated incremental RL algorithm in
continuous spaces. Env. stands for environment.

Here, we give a convergence analysis on the integrated
algorithm. First, since policy relaxation is ensured to be
unbiased by using the importance sampling technique in (10),
it enjoys the same convergence guarantees as canonical policy
gradient methods [1]. Second, the convergence guarantee of
the importance weighted policy gradient in Algorithm 2 is
presented in Theorem 1. Therefore, it can be demonstrated that
the integrated algorithm exhibits good theoretical convergence
properties.

Theorem 1: Let π be any differentiable policy approxima-
tor with σ -bounded derivatives that maxθ,s,a,i, j |(∂2π(a|s))/
(∂θ i∂θ j )| < σ < ∞. Let {αn}∞n=0 be any step-size sequence
such that limn→∞ αn = 0 and

∑
n αn = ∞. Let {wn}∞n=0 be

any importance weight sequence that is clipped to be bounded
by [w,w], i.e., 0 < w ≤ wn ≤ w < ∞. Let dπ(s) =
limt→∞ Pr(st = s|s0, π), r(π) = E[∑∞t=0 γ

trt |s0, π], and
Qπ (s, a) = E[∑∞t ′=t γ

t ′−t rt ′ |st = s, at = a, π] denote the
stationary distribution of states, the discounted return, and the
action value under π , respectively. Then, for any MDP with
bounded rewards, the sequence {r(πn)}∞n=0, defined by any θ0,
πn = π(θn), and

θn+1 = θn + αnwn

∑
s

dπn (s)
∑

a

∂πn(a|s)
∂θ

Qπn (s, a) (14)

converges such that limn→∞(∂r(πn))/(∂θ) = 0.
Proof: The bounds on (∂2π(a|s))/(∂θ i∂θ j ) and on the

MDP’s rewards together assure us that (∂2r(π))/(∂θ i∂θ j ) is
also bounded. Let α̃n = αnwn , then the gradient ascent rule
in (14) becomes

θn+1 = θn + α̃n

∑
s

dπn (s)
∑

a

∂πn(a|s)
∂θ

Qπn (s, a) (15)

where α̃n can be considered as a new step-size. According to
the boundedness of the importance weight wn , we have

lim
n→∞ α̃n ≤ lim

n→∞ αnw = w · lim
n→∞ αn = 0

lim
n→∞ α̃n ≥ lim

n→∞ αnw = w · lim
n→∞ αn = 0

which gives the result that limn→∞ α̃n = 0. Furthermore,
we have ∑

n
α̃n ≤

∑
n
αnw = w ·

∑
n
αn = ∞∑

n
α̃n ≥

∑
n
αnw = w ·

∑
n
αn = ∞

so that
∑

n α̃n = ∞. These two requirements on the new
step-size α̃n , together with the bound on (∂2r(π))/(∂θ i∂θ j ),
assure that the sequence {r(πn)}∞n=0 following the ascent
rule in (15) converges to a local optimum [30], [48],
i.e., limn→∞(∂r(πn))/(∂θ) = 0.

Remark 2: Indeed, how to detect and identify changes is a
crucial part of learning in dynamic environments. In this paper,
we solely focus on how RL algorithms can rapidly adapt to the
new environment once the change has been detected and iden-
tified. This is in a similar spirit to those studies in fault-tolerant
control or dynamic multi-objective optimization [49], which
exclusively concentrate on enabling controllers/algorithms to
quickly accommodate dynamic changes while leaving the
detection and identification to be addressed separately.

Remark 3: We also give a rough complexity analysis on
the integrated algorithm. In the policy relaxation procedure,
we need to calculate the importance sampling ratio (πθ (τ ))/
(πr (τ )) in (11). However, it would not consume any compu-
tation for extra variables, since πr (τ ) is uniformly distributed
and πθ has been calculated in the primitive policy gradient
step. Similarly, when using importance weighting in (13),
no additional variables need to be addressed since the weights
are calculated from the episodes’ returns. Calculating the
weights in (12) would incur effectively zero extra overhead,
because the scalars generally take up much less memory
than the large parameter vector θ updated in each iteration.
Together, it can be observed that the integrated algorithm
occupies roughly the same computational complexity as the
canonical policy gradient methods.

IV. EXPERIMENTS

To evaluate the proposed method on RL problems in con-
tinuous spaces, we construct several sets of tasks based on
the simulated continuous control environments in the rllab
benchmark suite [14], particularly addressing the following
questions.
Q1: What is the degree of dynamic changes in the environ-

ment that can be handled by the proposed method?
Q2: Does the proposed method achieve a faster adaptation to

these dynamic environments?
Q3: How do the policy relaxation and the importance

weighting mechanisms affect the incremental learning
performance, respectively?

A. Experimental Settings

1) Baselines: Since we aim at improving the adaptability
of RL algorithms to dynamic environments, our focus is to
compare with two direct baselines: Random and Pretrained.
In addition, a particularly related transfer learning method,
policy reuse policy gradient (PRPG), is compared in the
experiments. The baselines are agiven as follows.

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:14:15 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: INCREMENTAL RL IN CONTINUOUS SPACES VIA POLICY RELAXATION AND IMPORTANCE WEIGHTING 1877

1) Random: Training a policy from randomly initialized
parameters in the new environment, i.e., learning from
scratch.

2) Pretrained: Initializing the policy parameters from the
original environment and directly training the policy in
the new environment.

3) PRPG: As a more challenging reference point, we report
results for a policy-based transfer method called prob-
abilistic policy reuse [32], [50]. We adopt a version of
the algorithm that builds on policy gradient and reuses
the policy from the original environment. The result-
ing method, PRPG, is thus directly comparable to our
proposed method. The details of PRPG, including its
pseudocode, are given in the Appendix.

2) Training Configurations: Empirically, RL algorithms
with nonlinear function approximation are employed more
for solving complex tasks, since nonlinear architectures have
better approximation and generalization capabilities in regres-
sion of high-dimensional policy/value functions than the linear
forms. Following the state-of-the-art benchmarks for contin-
uous RL problems [14], [51], we adopt a similar model
architecture for all of the investigated domains. The trained
policy of all tested methods is approximated by a neural
network with two hidden layers of size 100, with rectified
linear unit (ReLU) nonlinearities. The discount factor is set as
γ = 0.99.

For each report unit (a particular algorithm running on
a particular task), we define two performance metrics. One
is the average return over a batch of learning episodes in
each policy iteration, which is defined as (1/m)

∑m
i=1 ri (πθ ),

where m is the batch size, and ri (πθ ) is the received return
for executing the associated policy. The other is the aver-
age return over all policy iterations, which is defined as
(1/m J)

∑J
j
∑m

i=1 r j
i (πθ ), where J is the number of training

iterations. The former will be plotted in figures and the latter
will be presented in tables.

We utilize a statistical analysis method to address the issue
of stochastic dynamic environments. In each task, the learning
agent first learned an optimal policy given a randomly chosen
environment. Then, the environment randomly changes to a
new one, and we record the performance of all tested methods
when adapting to the new environment. We repeat the process
for 20 times and report the statistical results to demonstrate the
performance for learning in dynamic environments. Moreover,
due to the randomness of neural networks, we repeat five runs
over each policy training and report the mean regarding the
performance metrics. All the algorithms are implemented with
Python 3.6 running on Ubuntu 16 with 20 Intel Core i7-6950X
3.00-GHz CPU processors, 128-GB RAM, and a Titan Xp
GPU of 12-GB memory. The code is available online.2

B. 2-D Navigation Tasks
In our first RL experiment in a dynamic environment,

we study the task where a point agent must move to a goal
position in 2-D. The observation is the current 2-D position,
and the actions correspond to 2-D velocity commands clipped

2https://github.com/HeyuanMingong/irl_cs

Fig. 4. Examples of three types of dynamic environments in the 2-D
navigation tasks. Ṡ is the start point and Ġ is the goal point. Puddles are
shown in black. (a) Type I: the goal changes. (b) Type II: the puddles change.
(c) Type III: both the goal and the puddles change.

to be in the range of [−0.1, 0.1]. Episodes terminate when the
agent is within 0.01 of the goal or at the horizon of H = 100.
The gradient updates are computed using vanilla policy gra-
dient (REINFORCE) [14], [52]. The hyperparameters are set
as learning rate α = 0.01, batch size m = 20, and burn-in
episodes k = 100.

1) Q1: To address Q1, we simulate three types of dynamic
environments in Fig. 4 as follows.

1) Type I: As shown in Fig. 4(a), the dynamic environment
is created by changing the goal position within the unit
square randomly. The reward is the negative squared
distance to the goal minus a control cost that is positively
related to the scale of actions. Corresponding to the
statement in Section III-A, the environment changes in
the reward functions in this case.

2) Type II: This experimental domain is also a modified
version of the benchmark puddle world environment pre-
sented in [31] and [53]. As shown in Fig. 4(b), the agent
should drive to the goal while avoiding the three circular
puddles with different sizes. When hitting on the puddles,
the agent will receive an additional negative reward and

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:14:15 UTC from IEEE Xplore.  Restrictions apply. 



1878 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

TABLE I

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER ALL
ITERATIONS OF ALL TESTED METHODS IMPLEMENTED IN THE

2-D NAVIGATION TASKS. HERE AND IN SIMILAR TABLES

BELOW, THE MEAN ACROSS 20 RUNS IS PRESENTED,
AND THE CONFIDENCE INTERVALS ARE THE

CORRESPONDING STANDARD ERRORS.
THE BEST PERFORMANCE IS

MARKED IN BOLDFACE

bounce to its previous position. The dynamic environment
is created by moving the puddles within the unit square
randomly, i.e., the environment changes in the reward and
state transition functions.

3) Type III: As a combination of the above two types shown
in Fig. 4(c), this kind of dynamic environment is created
by changing both the goal and the puddles within the unit
square randomly. It is considered to be more complex
than the other two types.

2) Q2: To address Q2, the main experimental results of
the three baselines and the proposed method regarding the
three types of dynamic environments are first presented. The
average return per iteration is shown in Fig. 5. Furthermore,
Table I reports the numerical results in terms of average return
over all iterations, which are acquired from 100 iterations
for types I and III, and 500 iterations for type II, respec-
tively. It can be observed that, in all three types of dynamic
environments, the proposed method achieves a larger average
return as well as a faster learning adaptation compared to
the three baselines. The performance gap in terms of average
return per iteration is more pronounced for smaller amounts
of computation (Fig. 5), which is supposed to benefit from
the distinct acceleration of adaptation to these dynamic envi-
ronments. The Pretrained baseline performs the best among
the three baselines due to the benefit from the initialization of
policy parameters from the original environment.

Fig. 6 shows the detailed running time regarding the
received average return per iteration. Compared to the base-
lines, the required time of the proposed method increases
much slower as the received average return increases. Fur-
thermore, Table II shows the final running time required for
convergence3 of all test methods. Roughly, for a comparable
convergence performance, the total time required of the pro-
posed method is 2–9 times smaller than that of the baselines.
In summary, consistent with the statement in Section III-A,
it is verified that the proposed method is capable of handling
various types of dynamic environments where the reward
and state transition functions may change and provides a
significantly faster learning adaptation to them.

Remark 4 (Jumpstart): It can be observed that the Pre-
trained baseline and the proposed method achieve a significant

3Empirically, all variants of the policy gradient algorithms in this paper are
judged to have converged when the increased return over ten iterations is less
than 10−2. More details about the convergence of the policy gradient theorem
can be found in [1].

jumpstart [17] performance compared to the other baselines
in types I and II settings. It is consistent with the analy-
sis in Section III-C that, compared to a set of randomly
initialized policy parameters, the previous one has learned
some of the features of the state-action space in the original
environment. Recall the environments in Fig. 4, compared
to type I, the optimal path in type II is likely to change
less, indicating that this type of dynamic environment is less
complex. Thus, the jumpstart is obviously more appealing in
type II setting. In contrast, the type III dynamic environment is
so complex (i.e., changing too much) that the initial jumpstart
improvement is much smaller than that of the other two types.

Remark 5 (PRPG): The performance of PRPG is close to
that of Random. In all three settings, PRPG receives a slightly
higher return than Random in the first few iterations, because
the reused policy is a little better than a randomly initialized
policy in the new environment. However, since only one
source task is available in the incremental learning setting,
the provided knowledge base is not likely to benefit the
target task a lot. Due to the change of the environment, the
reused policy from the original environment quickly becomes
less useful in the new environment. Comparing PRPG with
Pretrained, it can be inferred that transferring the parameters
of the policy network (Pretrained) generally performs much
better than transferring only the behavior policies (PRPG).

Due to involving importance weighting of learning episodes,
the proposed method shares some similarities with methods
that reweight reward functions using function approximation.
Therefore, we further compare the proposed method with sev-
eral recent reward-weighted regression (RWR) methods [14].
RWR uses a function λ : R→ R≥0 that transforms raw returns
to nonnegative values. We report results for the following three
kinds of RWR methods.

1) RWR-1: λ(r) = βe−βr [54], where β is an adaptive
internal parameter.

2) RWR-2: Policy learning by weighting exploration with
the returns [55], λ(r) = εr , where ε is associated
with the exploration degree when sampling actions from
the Gaussian distribution in (3).

3) RWR-3: λ(r) = r − rmin [14], [56], where rmin is the
minimum return among all episodes collected in the
current iteration. For a fair comparison in the incremental
learning setting, we also initialize the policy parameters
from the original environment for these RWR methods.

Fig. 7 shows the average return per iteration, and Table III
shows the numerical results in terms of average return over
all iterations. It can be observed that the proposed method
significantly outperforms these state-of-the-art RWR methods.

3) Q3: To address Q3, i.e., identify the respective effects of
the policy relaxation and importance weighting mechanisms,
a control variables approach is adopted to separate the two
processes apart for observation. In each task, after initializing
the policy parameters from the original environment, the fol-
lowing four variants of the proposed method are applied for
the learning adaptation in the new environment.

1) None: No policy relaxation or importance weighting
mechanism is used, i.e., degenerating to the Pretrained
baseline.
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Fig. 5. Average return per iteration of all tested methods in the 2-D navigation tasks. Here and in similar figures below, the mean of average return per
iteration across 20 runs is plotted as the bold line with 95% bootstrapped confidence intervals of the mean (shaded). (a) Type I. (b) Type II. (c) Type III.

Fig. 6. Running time regarding the averaged return per iteration of all tested methods in the 2-D navigation tasks. (a) Type I. (b) Type II. (c) Type III.

TABLE II

RUNNING TIME (SECONDS) FOR CONVERGENCE OF ALL TESTED

METHODS IN THE THREE TYPES OF 2-D NAVIGATION

TASKS. THE BEST PERFORMANCE
IS MARKED IN BOLDFACE

TABLE III

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER ALL

ITERATIONS OF THE PROPOSED METHOD AND THE RWR
METHODS IN THE 2-D NAVIGATION TASKS

2) PR: Only apply the policy relaxation mechanism.
3) IW: Only apply importance weighting mechanism.
4) PR + IW: Both the policy relaxation and the importance

weighting mechanisms are used.
The learning performance in terms of average return per
iteration of the four variants is shown in Fig. 8.

First, the variants of None and PR are compared to identify
how the policy relaxation mechanism affects the adapta-
tion in the new environment. In all three types of settings,
the policies are relaxed for just a few initial iterations, and
the performance in terms of average return is improved a
little bit in the subsequent learning iterations. It verifies that
encouraging a proper exploration in the beginning leads to a
better adaptation in the long term, as stated in Section III-B.

Specifically, in type II setting, the policy relaxation degener-
ates the average return a bit at early policy iterations. Recall
the analysis in Section III-C that initializing parameters from
the original environment tends to benefit the new learning
process. Relaxing the behavior policy to a uniform one proba-
bly sacrifices that benefit a bit at early steps. However, in the
long term, the policy relaxation will boost the performance
regarding the learning speed and average return when adapt-
ing to the new environment, i.e., short-term pessimism and
long-term optimism.

Next, the IW variant is compared to None for verifying
the effectiveness of the importance weighting mechanism.
Obviously, when weighing each learning episode according to
its importance, the performance in terms of average return per
iteration can be improved during the entire learning process.
In the incremental learning setting, since the policy parame-
ters are initialized from another environment, the generated
episodes with higher returns are considered to be more in
line with the new environment, and hence contain more
new information. It verifies the assumption in Section III-C
that if higher importance weights are assigned to episodes
that contain more new information, the previous optimum of
parameters is likely to be faster adjusted to a new one that fits
in the new environment.

Finally, all the four variants are compared. It can be
observed that the importance weighting mechanism better
improves the learning performance than the policy relax-
ation one, and combining the two mechanisms together
(PR + IW) leads to the best adaptation to these various
dynamic environments.

C. Locomotion Tasks
To study how well the proposed method can scale to

more complex DRL problems in dynamic environments,
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Fig. 7. Average return per iteration of the proposed method and the RWR methods in the 2-D navigation tasks. (a) Type I. (b) Type II. (c) Type III.

Fig. 8. Average return per iteration of the four variants of the proposed method in the 2-D navigation tasks. (a) Type I. (b) Type II. (c) Type III.

we also study the learning adaptation on several high-
dimensional locomotion tasks. We employ four environments
in the MuJoCo simulator [57] of OpenAI Gym to evaluate
the algorithms, including Reacher, Swimmer, Hopper, and
HalfCheetah domains. The state and action spaces are the
original ones provided in the MuJoCo environments. All the
tasks require controlling an agent to move, where the agent is
all composited by links and joints. The hyperparameters are
set as learning rate α = 0.01, batch size m = 50, burn-in
episodes k = 200, and time horizon H = 100. The detailed
setting is described in the following.

1) Reacher: This domain consists of moving a two-joint
torque-controlled simulated robotic arm to a specific target
location. The reward is the negative squared distance to the
target point minus a control cost. The gradient updates are
computed using vanilla policy gradient with the learning rate
α = 0.01. Similar to the 2-D navigation domain, we vary the
reward and state transition functions to create three types of
stochastic dynamic environments as follows.

1) Type I : Varying the target location within the reachable
circle randomly. The environment changes in the reward
functions in this case.

2) Type II : Varying the physical variables of “link0” and
“joint0” at random, i.e., the state transition functions
change.

3) Type III : Varying both the target location and the physical
variables randomly. The environment changes in both the
reward and state transition functions. The meaning of the
physical variables can be found in the MuJoCo simulator.

2) Swimmer/Hopper/HalfCheetah: It requires a 2-D
Swimmer/one-legged Hopper/planar Cheetah robot to
swim/hop/run forward at a particular velocity. The reward
is the negative absolute value between the current velocity
of the agent and a goal, minus a control cost. The dynamic

environment is created by changing the goal velocity between
0.0 and 2.0 at random. To handle these challenging tasks,
the trust region policy optimization (TRPO) [58] is employed
as the base policy search algorithm.

First, all tested methods are applied to the three types of
dynamic environments in the Reacher domain. Fig. 9 shows
the learning performance in terms of the average return per
policy iteration, and Table IV shows the numerical results in
terms of the average return over all 500 training iterations.
Similar to the 2-D navigation domain, the Pretrained baseline
and the proposed method obtain a much better performance
than the other two baselines. It can be observed that the
proposed method is capable of handling various dynamic
environments in the challenging Reacher tasks and achieves
a faster learning adaptation to them compared to all baselines.

Furthermore, the proposed method and the baselines are
implemented on the complex Swimmer/Hopper/HalfCheetah
tasks, and the learning performances in terms of the received
return per iteration and the average return over all iterations
are presented in Fig. 10 and Table V, respectively. The
Pretrained baseline and the proposed method obtain an obvious
jumpstart performance in all three tasks. It indicates that the
locomotion skills learned in the original environment can help
the new learning process a lot in the beginning. However,
in Swimmer and Hopper domains, the Pretrained baseline
receives a nonincreasing return in the latter policy iterations.
We conjecture that the learning algorithm probably gets stuck
in a bad local optimum in the new environment since it
was overfitted to the original environment. Consistent with
the analysis in Section III-C, initializing parameters from
the original environment tends to benefit the learning agent
when starting to interact with the new environment, while
it may degrade the learning performance in the long term.
On the contrast, the proposed method can receive significantly
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Fig. 9. Average return per iteration of all tested methods in the Reacher domain tasks. (a) Type I. (b) Type II. (c) Type III.

Fig. 10. Average return per iteration of all tested methods in the complex Swimmer/Hopper/HalfCheetah domain tasks. (a) Swimmer. (b) Hopper.
(c) HalfCheetah.

TABLE IV

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER ALL

ITERATIONS OF ALL TESTED METHODS IMPLEMENTED
IN THE REACHER DOMAIN TASKS

TABLE V

NUMERICAL RESULTS IN TERMS OF AVERAGE RETURN OVER ALL
ITERATIONS OF ALL TESTED METHODS IMPLEMENTED IN THE

SWIMMER/HOPPER/HALFCHEETAH DOMAIN TASKS

higher returns during the entire learning process than all
baselines. By mechanisms of encouraging a proper exploration
and emphasizing the new information, the proposed method
rapidly guides the policy toward regions of parameter space
that better fits in the new environment. In summary, the results
demonstrate that the proposed method is still capable of
acquiring a faster adaptation to the dynamic environments of
high-dimensional locomotion tasks.

V. CONCLUSION

This paper addresses the incremental RL problem in contin-
uous spaces for dynamic environments, which may change in
the reward and state transition functions over time. The goal

is to adjust the previously learned policy in the original
environment to a new one whenever the environment changes.
To improve adaptability, we introduce a two-step solution
incorporated with the incremental learning procedure: policy
relaxation and importance weighting. First, the policy relax-
ation mechanism aims at a proper exploration in the new
environment by relaxing the behavior policy to a uniform
one for a few learning episodes. It alleviates the conflict
between the new information and the existing knowledge for
a better adaptation in the long term. Second, an importance
weighting mechanism is applied based on the observation that
episodes receiving higher returns are more in line with the new
environment, and hence contain more new information. During
parameter updating, we assign higher weights to episodes that
contain more new information, thus encouraging the previous
optimal policy to be faster adapted to a new one that fits
in the new environment. Experiments were conducted on
traditional navigation tasks and complex locomotion tasks with
varying configurations. The results verified that the proposed
method was capable of handling various types of dynamic
environments and providing a significantly faster learning
adaptation to them.

Our future work will address more complicated cases, such
as detecting changes of environments, learning in more chal-
lenging dynamic environments where the state-action space
may change, or learning in intensively changing environments
(e.g., changing between consecutive episodes).

APPENDIX

BASELINE PRPG

The policy reuse learner [32] improves its exploration by
probabilistically exploiting from these past policies. It selects
to reuse the past knowledge depending on its contribution to
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Algorithm 4 PRPG

Input: Previous optimal policy parameters θ∗t−1;
learning rate α; discount factor γ ;
batch size m; decay factor ν

Output: Optimal policy parameters θ∗t for Mt

1 Randomly initialize θ t

2 scoret−1← 0, the score associated with πθ∗t−1
;

scoret ← 0, the score associated with πθ t ;
usedt−1← 0, the number of times πθ∗t−1

is used;
usedt ← 0, the number of times πθ t is used

3 Initialize the control probability to reuse old policy: ψ
4 while not converged do
5 for i ← t − 1, t do
6 pi ← eυ×scorei /

∑
j eυ×score j

7 end
8 Select the behavior policy: c ∼ Bernoulli(pt−1, pt )
9 if c �= t then

10 use_pre_policy ∼ Bernoulli(ψ)
11 else
12 use_pre_policy← false
13 end
14 if use_pre_policy then
15 Sample m episodes: τ i ∼ πθ∗t−1

, i = 1, . . . ,m

16 ∇θ t J (θ t ) =∑m
i=1

πθt (τ
i )

πθ∗t−1
(τ i )
∇θ t logπθ t (τ

i )r(τ i )

17 scoret−1← scoret−1 × usedt−1+∑m
i=1 r(τ i )

usedt−1 +1
18 usedt−1 ← usedt−1+1
19 else
20 Sample m episodes: τ i ∼ πθ t , i = 1, . . . ,m
21 ∇θ t J (θ t ) =∑m

i=1 ∇θ t logπθ t (τ
i )r(τ i )

22 scoret ← scoret × usedt +∑m
i=1 r(τ i )

usedt +1
23 usedt ← usedt +1
24 end
25 θ t ← θ t + α∇θ t J (θ t )
26 ψ ← ψν
27 end

the exploration process, called reuse gain, which is discovered
concurrently during the learning process. Barreto et al. [50]
adopted a version of this algorithm that built on Q-learning,
resulting in a method, called policy reuse in Q-learning
(PRQL), for a direct comparison. In this paper, we adopt a
version of the algorithm that incorporates with policy gradient
and reuses the policy from the original environment. The
resulting method, called PRPG, is used as a baseline that is
directly comparable to the proposed method. The pseudocode
is given in Algorithm 4.
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