
IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019 621

Incremental Reinforcement Learning With
Prioritized Sweeping for Dynamic Environments

Zhi Wang , Chunlin Chen , Member, IEEE, Han-Xiong Li , Fellow, IEEE,
Daoyi Dong , Senior Member, IEEE, and Tzyh-Jong Tarn, Life Fellow, IEEE

Abstract—In this paper, a novel incremental learning al-
gorithm is presented for reinforcement learning (RL) in
dynamic environments, where the rewards of state-action
pairs may change over time. The proposed incremental
RL (IRL) algorithm learns from the dynamic environments
without making any assumptions or having any prior knowl-
edge about the ever-changing environment. First, IRL gen-
erates a detector-agent to detect the changed part of the
environment (drift environment) by executing a virtual RL
process. Then, the agent gives priority to the drift environ-
ment and its neighbor environment for iteratively updating
their state-action value functions using new rewards by dy-
namic programming. After the prioritized sweeping process,
IRL restarts a canonical learning process to obtain a new
optimal policy adapting to the new environment. The nov-
elty is that IRL fuses the new information into the existing
knowledge system incrementally as well as weakening the
conflict between them. The IRL algorithm is compared to
two direct approaches and various state-of-the-art transfer
learning methods for classical maze navigation problems
and an intelligent warehouse with multiple robots. The ex-
perimental results verify that IRL can effectively improve
the adaptability and efficiency of RL algorithms in dynamic
environments.

Manuscript received August 23, 2017; revised October 12, 2018;
accepted February 4, 2019. Date of publication February 14, 2019;
date of current version April 16, 2019. Recommended by Techni-
cal Editor E. Tunstel. This work was supported by the National
Natural Science Foundation of China (Nos. 71732003, 61828303,
and 61432008), by the National Key Research and Development Pro-
gram of China (No. 2016YFD0702100), by the GRF project from RGC of
Hong Kong (CityU: 11205615), and by the Australian Research Council
(DP190101566). (Corresponding author: Chunlin Chen.)

Z. Wang is with the Department of Control and Systems Engineering,
Nanjing University, Nanjing 210093, China, and with the Department of
System Engineering and Engineering Management, City University of
Hong Kong, Hong Kong (e-mail:,njuwangzhi@gmail.com).

C. Chen is with the Department of Control and Systems Engineering,
Nanjing University, Nanjing 210093, China (e-mail:,clchen@nju.edu.cn).

H.-X. Li is with the Department of System Engineering and Engi-
neering Management, City University of Hong Kong, Hong Kong, and
with the State Key Laboratory of High Performance Complex Manu-
facturing, Central South University, Changsha 410083, China (e-mail:,
mehxli@cityu.edu.hk).

D. Dong is with the School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT 2600, Australia (e-mail:,
daoyidong@gmail.com).

T.-J. Tarn is with the Department of Electrical and Systems Engi-
neering, Washington University in St. Louis, St. Louis, MO 63130 USA
(e-mail:, tarn@wuauto.wustl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMECH.2019.2899365

Index Terms—Dynamic environments, environment drift,
incremental reinforcement learning (IRL), intelligent ware-
houses, prioritized sweeping.

I. INTRODUCTION

R EINFORCEMENT learning (RL) [1] is an important ap-
proach to machine learning, control engineering, opera-

tions research, etc. RL theory addresses the problem of how an
autonomous active agent can learn to approximate an optimal
behavioral strategy while interacting with its environment. In
RL, the learning environment of an autonomous agent is often
modeled as a Markov decision process (MDP) using an interac-
tive cycle of sensing, acting and learning with rewards. RL algo-
rithms, such as temporal difference [2] and Q-learning [3], have
been widely used in intelligent control and industrial applica-
tions [4]–[11]. Recent developments of deep RL [12], [13] make
RL the state-of-the-art techniques for artificial intelligence.

Traditionally, the research on RL has been focused on station-
ary problems, where the environment remains unchanged during
the whole learning process. However, in many real-world appli-
cations, the environments are often dynamic, where the agent’s
states, available actions, state transition functions, and corre-
sponding rewards may change over time, such as for robot
navigation problems [14] or multi-agent RL (MARL) prob-
lems [15]. There are mainly two kinds of approaches dealing
with RL in dynamic environments. The first kind uses the trick
of designing parameters, such as a new definition for the state
space [14], a new reward evaluation method [16], and the fuzzi-
fication of RL parameters [17]. Despite the simplicity, it relies
on specific scenarios for preprocessing parameters, and cannot
obtain good generalization performance over diverse RL prob-
lems in dynamic environments. The other kind is transfer learn-
ing [18]. The core idea is that the experience gained in learning to
perform a set of source tasks can help improve the learning per-
formance in a related but different task. Many methods have
been proposed for intertask transfer, such as probabilistic pol-
icy reuse [19], learning a portable shaping function via shared
features [20], policy transfer using reward shaping [21], scal-
able transfer expectations [22], stochastic abstract policy [23],
and Bayesian policy reuse [24]. Transfer learning has recently
been investigated in the domain of MARL and learning in dy-
namic environments, while it requires a relatively large set of
source knowledge to obtain a good knowledge base for a target
task.

1083-4435 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0304-3965
https://orcid.org/0000-0003-3929-4707
https://orcid.org/0000-0002-0707-5940
https://orcid.org/0000-0002-7425-3559
mailto:njuwangzhi@gmail.com
mailto:clchen@nju.edu.cn
mailto:mehxli@cityu.edu.hk
mailto:daoyidong@gmail.com
mailto:tarn@wuauto.wustl.edu

622 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019

A new mechanism is necessary for learning algorithms to
track and adapt to the ever-changing environment. Thus, the
concept of incremental learning emerges by fusing the new
information into the existing knowledge system. Incremental
learning has been widely addressed in machine learning and in-
telligent control communities to cope with learning tasks where
training samples become available over time or the learning en-
vironment is ever-changing [25]. Various algorithms have been
suggested for incremental learning in different areas to deal
with nonstationary data, including unsupervised learning [26],
supervised learning [27], machine vision [28], [29], evolution-
ary algorithms [30], [31], and human–robot interaction [32].
However, few results have been reported regarding incremental
learning for RL problems in dynamic environments. The agent
tends to execute the previous converged optimal policy and may
be trapped. It is hard to find the real optimal policy adapting
to the current new environment. The simplest way is to restart
an RL process from scratch whenever an environment change
is detected, but it may not be feasible in many data-intensive
real applications due to limited memory and computational re-
sources. It should be more efficient to develop new approaches
that can fuse the new information into the existing knowledge
system in an incremental way to adapt to the ever-changing
environment.

In this paper, we address the problem of RL in dynamic
environments, where the reward functions may change over
time. A novel incremental RL (IRL) algorithm is designed to
guide the previous optimal policy to a new one adapting to
the new environment. First, an RL agent computes the value
functions and optimal policy in the original environment. When
the environment changes, an RL detector-agent is generated to
detect the changed part of the environment, as called drift en-
vironment. Then, the value functions are updated for the drift
environment and its neighbor environment using dynamic pro-
gramming, which is called prioritized sweeping of drift environ-
ment. Finally, the agent starts a new RL process with the partly
updated value functions to a new optimal policy, aiming at fus-
ing the new information (drift environment) into the existing
system (previous optimal policy) in an incremental way.

To comprehensively evaluate the proposed IRL algorithm,
various experiments are carried out for classical maze naviga-
tion problems and an intelligent warehouse system. We compare
the IRL algorithm with two direct methods, including 1) RL
without π∗old method: restart a completely new learning process
from scratch without using any existing knowledge (i.e., previ-
ous optimal polity π∗old from the original environment); 2) RL
with π∗old method: restart a learning process directly with exist-
ing knowledge, but without prioritized sweeping in advance. In
addition, IRL is further compared with various state-of-the-art
transfer learning methods.

This paper is organized as follows. In Section II, the basic
concepts of RL are introduced and an overview of different
approaches is presented for incremental learning in various re-
search areas. In Section III, the framework of IRL is presented,
and then related techniques and specific algorithms are given in
detail. Experimental results on maze benchmark problems are
demonstrated in Section IV and the applications to an intelligent

warehouse problem are given in Section V. Finally, Section VI
presents concluding remarks.

II. BACKGROUND

In this section, RL is first introduced and then an overview
of incremental learning in various areas is provided with the
motivation of introducing its counterpart in RL.

A. Reinforcement Learning

Standard RL theories are based on the concept of MDP.
An MDP is denoted as a tuple 〈S,A,R, P 〉, where S is the
state space, A is the action space, R is the reward function,
and P is the state transition function. A policy is defined as a
function π : S → Pr(A), i.e., a probability distribution in the
state-action space. The objective is to estimate the optimal pol-
icy π∗ that satisfies Jπ ∗ = maxπ Jπ = maxπ Eπ [

∑∞
t=0 γ

trt],
where γ ∈ (0, 1] is the discount factor and rt is the reward at
time-step t, and Jπ is the expected total reward.

MDPs with known state transition functions and reward func-
tions can be solved optimally using dynamic programming. A
value function Q(s, a) represents the estimate of the expected
return attainable from executing the action a in the state s. Its
computation (i.e., value iteration) repeatedly sweeps through
the state-action space. The value function of each state-action
pair is updated according to

Q(s, a)←
∑

s ′
p(s′|s, a)[r(s, a, s′) + γmax

a ′
Q(s′, a′)] (1)

until the largest change, Δ, for any state-action pair is smaller
than a preset constant threshold. After the algorithm converges,
the optimal policy is obtained by simply taking the greedy action
in each state s as a∗ = arg maxa Q∗(s, a),∀s ∈ S.

When the agent has no prior knowledge of the environment,
Q-learning (a widely used RL algorithm) can achieve optimal
policies from delayed rewards. At a time step t, the agent ob-
serves the state st , and then chooses an action at using a certain
exploration strategy. After executing the action at , the agent
receives a reward rt+1 (a reflection of how good that action is in
a short-term sense), and gets into the next state st+1. Then, the
agent will choose the next action at+1. Let αt be the learning
rate, the one-step updating rule of Q-learning can be described
as

Q(st , at)← Q(st , at)

+ αt

(
rt+1 + γmax

a ′
Q(st+1, a

′)−Q(st , at)
)
.

(2)

More details about Q-learning can be found in [1] and [3].

B. Incremental Learning

Incremental learning has attracted wide interests from dif-
ferent areas of machine learning and intelligent control. In un-
supervised/supervised learning cases, it focuses on continual
learning from data, which are available only in small batches
over a period of time. The new information is learned while the

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: INCREMENTAL REINFORCEMENT LEARNING WITH PRIORITIZED SWEEPING FOR DYNAMIC ENVIRONMENTS 623

TABLE I
INCREMENTAL ALGORITHMS IN VARIOUS APPLICATIONS

previously acquired knowledge is preserved. Well-performed
examples include adaptive resonance theory [26] and learn++
family of algorithms [27]. In the areas of machine vision, evo-
lutionary algorithms, and human–robot interaction, incremental
learning focuses on learning from and adapting online to dy-
namic environments. Well-performed instances include incre-
mental principal component analysis (IPCA) for robust visual
tracking [28] and face recognition [29], population-based in-
cremental learning for dynamic optimization problems [30],
incremental learning for evolutionary-algorithms-based classi-
fication [31], and human–robot interaction [32].

As summarized in Table I, all these incremental learn-
ing schemes incrementally fuse the new information into the
existing knowledge system, and emphasize on the learning
performance in dynamic environments. However, few practi-
cal implementations of incremental learning for RL have been
systematically investigated. Although there are several results
proposing the concept of incremental learning in the RL do-
main [33]–[36], they focused on the bootstrap property within
a single learning process in a stationary environment, which is
different from the incremental learning setting for dynamic envi-
ronments in this paper. Compared to the various areas discussed
above, RL has its own properties, such as the characteristics
of sequential decision-making and learning from delayed re-
wards. Hence, it is desired to develop new incremental learning
schemes for RL, which motivates our idea of IRL for dynamic
environments.

III. INCREMENTAL REINFORCEMENT LEARNING

As an example, imagine a search-and-rescue robot to de-
tect injured people inside damaged buildings. The falling bricks
or steels may block the shortest path to the wounded that the
robot has already learned. Since relearning the new environment
from scratch is too time-consuming, it is reasonable and effec-
tive to revise the optimal policy incrementally after learning the
changed part first. In this type of problems, incremental learning
can be achieved and the learning process can be accelerated to
adapt to the dynamic environment. The concept of IRL has been
initialized in our conference paper [37] and a formal framework
for IRL is presented in detail with related techniques and specific
algorithms in this section. In particular, we consider dynamic
environments where the reward functions may change over
time.

Fig. 1. Illustration of IRL. Ṡ is the start point and Ġ is the goal point;
(s, a) is a given state-action pair; the arrows in the grids indicate the
optimal actions in corresponding states.

A. Framework for IRL

In a standard Q-learning process, we store the tuple 〈s, a, r, s′〉
every time the agent interacts with the environment, where r and
s′ are the reward and next state after executing the action a in
the state s. After convergence, we use the set of all tuples to
compute the optimal value functions set Q(S,A) and construct
the model of the environmentE(S,A,R, P). As shown in Fig. 1,
the RL agent observes different rewards at time t and t′ when
executing the same action a in the same state s. We call the
dynamic process where the environment is changing over time
as “environment drift,” and the changed part of the environment
is defined as “drift environment.”

Different from learning in a static environment, the optimal
policy may not always stay stable in dynamic environments.
Due to environment drift, the RL agent may not be able to
reach the target state following the previous optimal policy; or
there is an even better policy than the previous optimal one.
The objective for IRL in dynamic environments is to revise π∗

to a new one π∗n that adapts to the new environment by fusing
the new information (generated by environment drift) into the
existing knowledge system (optimal policy learned from the
original environment) incrementally.

Unfortunately, if the RL agent directly relearns a new optimal
policy based on the old one, it may be trapped in the new en-
vironment since it has converged to an optimum in the original
environment. Due to environment drift, there exists a conflict be-
tween the new information and the existing knowledge, which
may cost the agent an extraordinary amount of computational

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

624 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019

Fig. 2. Flow diagram of the integrated IRL algorithm. Abbreviation Env.
stands for environment.

Algorithm 1: Framework for IRL.
1 Start a Q-learning process to compute the optimal policy
π∗ and construct the original environment model
E(S,A,R, P).

2 Generate a detector-agent to detect the drift environment
when the environment changes.

3 Fuse the new information into the existing knowledge
system by prioritized sweeping of drift environment.

4 Restart a Q-learning process to compute the new optimal
policy π∗n and construct the new environment model
En (Sn ,An ,Rn , Pn).

time to fix this conflict. Therefore, it is necessary to first weaken
the conflict before making use of the existing knowledge. Since
the conflict is caused by environment drift, we primarily up-
date the value functions regarding the drift environment and its
neighbor environment using new rewards observed in the new
environment. This process is called as prioritized sweeping of
drift environment, aiming at fusing the new information (new
rewards) into the existing knowledge (previous optimal value
functions), as well as weakening the conflict between them. Fi-
nally, based on the value functions that have been prioritized
swept, the agent restarts an RL process to compute the new
optimal policy π∗n adapting to the new environment.

In this paper, we adopt the widely used Q-learning as the
implementation of all test algorithms. The framework of IRL
is summarized as in Algorithm 1 and illustrated by the flow
diagram as shown in Fig. 2, which will be implemented with
specific techniques and algorithms introduced in the following
sections.

Remark 1: IRL shares some similarities with transfer learn-
ing regarding transferring knowledge from one scenario (orig-
inal environment) to another (new learning process). However,
transfer learning focuses on providing a good knowledge base
for the target task, whereas IRL emphasizes the temporal prop-
erty of adding the new information to the existing knowledge

system and fine-tuning the previous optimal policy for the new
environment. The key representation of such a difference is the
prioritized sweeping process of drift environment. It guides the
previous optimal policy to a new one, whereas transfer learning
just acquires the transferred knowledge.

B. Detection of Drift Environment

Environment drift refers to the change of the environment
parameters over time. In supervised classification [27], it cor-
responds to “concept drift,” which refers to the change of
feature-based probabilities (evidence) of data. In visual tracking
research [28], it corresponds to the significant variation of the
objects’ appearance or surrounding illumination. In evolution-
ary computation [30], it corresponds to the change of the fitness
function, design variables, and environmental conditions. Drift
environment generates new data and provides new information
for the learner. As RL learns through interactions with the en-
vironment, i.e., using the reward r received when the action a
is taken in the state s, environment drift in RL implies that the
corresponding reward r of a certain state-action pair (s, a) has
changed over time. The drift environment is defined as the set
of all state-action pairs whose rewards in the new environment
differ from those in the original one.

Definition 1 (Drift Environment): Assume that the origi-
nal and the new environment models are constructed as
E(S,A,R, P) and En (Sn ,An ,Rn , Pn), respectively. Given a
state-action pair (s, a), s ∈ S ∩ Sn , a ∈ A ∩An , r ∈ R and
rn ∈ Rn , if the one-step reward r(s, a) �= rn (s, a), then the
state-action pair (s, a) has drifted. The set of all state-action pairs
that have drifted is defined as “drift environment,” and can be for-
mulated as Ed(Sd,Ad,Rd, Pd)|rn (sd, ad) �= r(sd, ad), where
s ∈ S ∩ Sn , a ∈ A ∩An .

Remark 2: According to the one-step value iteration of Q-
learning, the reward change will influence the value functions
of this state-action pair and its neighbor state-action pairs. In the
long term of learning, it will guide the previous optimal policy
to a new one for the new environment. In this sense, environ-
ment drift in RL shares some similarities with “concept drift”
in supervised classification [27], where concept drift guides the
fine-tuning of the classification boundaries.

Remark 3: Drift environment differs from a completely new
environment. In IRL, the original environment and the new one
share some parts of state-action space. However, in a completely
new environment, the state-action space has no guaranteed con-
nections with the original one. An agent should start the learning
process from scratch and the learning in a completely new envi-
ronment requires replacement learning (where existing knowl-
edge becomes irrelevant, i.e., reconstructing), whereas learning
with a drift environment requires supplemental learning (where
the new information is fused into the existing knowledge system,
i.e., fine-tuning).

In dynamic environments, the learning tasks require some
level of feedback about the incoming data or the learning per-
formance at any given time [27]. This feedback is used to discern
how the new information contained in the coming data differs
from existing knowledge. In IRL, the function of determining

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: INCREMENTAL REINFORCEMENT LEARNING WITH PRIORITIZED SWEEPING FOR DYNAMIC ENVIRONMENTS 625

when such a change (environment drift) has occurred is known
as the detection of drift environment. The goal is to detect the
part of state-action space whose rewards have changed, i.e., the
drift environment Ed . We need to observe the rewards in both
the original and the new environments to obtain the changed
part. Since the original environment model E has been con-
structed after the convergence of the previous learning process,
we generate a detector-agent to explore the new environment by
executing a virtual RL process. The RL detector-agent observes
the rewards by fully exploring the new environment with equal
probability all the time.

Assume that the total number of all state-action pairs in the
original environment is Nsum , and the number of the traversed
state-action pairs (also contained in the original environment)
explored by the detector-agent is Ne . When Ne

N s u m
≥ ρ, where

ρ is a predetermined threshold close to but less than 1, the
detector-agent ends the detection process for exploring the new
environment. We compare the rewards of state-action space in
the new environment with those in the original environment,
and construct the drift environment. The detailed drift detection
process is summarized as in Algorithm 2.

Remark 4: The detector-agent aims at exploring the state-
action space in the new environment as much as possible, rather
than executing a real RL process. Therefore, there is no need
to update the value functions and the probabilistic action selec-
tion policy. Since the environment has changed, the detector-
agent may not be capable of traversing all the state-action pairs
contained in the original environment. Hence, in the detec-
tion procedure, we usually set the exploration threshold ρ as a

constant near to 1 (e.g., 0.95). In order to achieve the prede-
termined exploration goal, for a given state-action pair in the
new environment, the detector-agent needs to traverse it only
once. Compared with a standard RL process, the computational
complexity of drift detection may be neglected.

C. Prioritized Sweeping of Drift Environment

In the original environment, we can construct the environment
model E(S,A,R, P) with known state transition functions and
reward functions. With the environment drift, the new environ-
ment has some similarities/connections with the original one,
especially those parts that have not drifted over time. Although
we cannot construct the complete model of the new environment
temporarily, we can use the predictive model of the original en-
vironment to concurrently train the new policy. In the first half
of the incremental learning process, the existing knowledge (the
original environment model) is used for a new learning process.
However, due to the environment drift, the agent tends to exe-
cute the previous optimal policy and may be trapped, which will
make it hard to find the real optimal policy. In other words, the
new information (drift environment) tends to be in conflict with
the existing knowledge (previous optimal policy). Hence, a new
mechanism is necessary to weaken the conflict in advance and a
prioritized sweeping process is applied for the drift environment
in the second half of the incremental learning process.

According to the updating rule of Q-learning in (2), the value
functions of the drift environment and its neighbor environ-
ment will change in the new environment. In the long term, the
change of drift environment influences the whole state-action
space from the near to the distant gradually and will lead to a
new optimal policy. Since the drift environment is the source of
new information, we can update the state-action space of drift
environment by dynamic programming with top priority, using
the value functions from the original environment and the re-
wards from the new environment. In this way, the IRL approach
fuses the new information into the existing knowledge system
(previous optimal value functions), as well as weakening the
conflict between them. Then, the value functions of the neigh-
bor state-action space will also change under the influence of
the drift environment.

Definition 2 (Neighborhood Degree): The neighborhood
degree (denoted as NEI) between the state-action pairs (s, a)
and (s′, a′) is defined as the step distance (i.e., the least steps of
actions) from state s to s′ with sequential actions starting with
action a, where a ∈ A(s) and a′ ∈ A(s′). Specifically, the NEI
between the same state-action pairs is defined as 0 and the NEI
between two adjacent state-action pairs is 1.

The set of state-action pairs, whose neighborhood degree to
a given pair (s, a) is below or equal to m, is defined as the
m-degree neighbor environment of (s, a)

Em
nei(Snei, Anei, Rnei, Pnei)|NEI[(snei, anei), (s, a)] ≤ m (3)

where (snei, anei) ∈ (Snei, Anei) and NEI[·] is the neighborhood
degree between the two state-action pairs.

As for the drift environment, the set of state-action pairs
whose neighborhood degree to any pair (sd, ad) in drift

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

626 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019

environment is below or equal to m is defined as the m-degree
neighbor environment of drift environment

Em
dn (Sdn ,Adn ,Rdn , Pdn)|NEI[(sdn , adn), (sd, ad)] ≤ m

(4)
where (sdn , adn) ∈ (Sdn ,Adn) and (sd, ad ∈ (Sd,Ad).

After updating the drift environment, we then update the state-
action space of its m-degree neighbor environment with the
second priority. It can be viewed as a process of spreading the
changes caused by the drift environment to its neighbors and
even to the whole state-action space gradually. In this process,
the new information is fused into the existing knowledge system
starting from the drift environment. The process of updating
the state-action space of the drift environment and its neighbor
environment with priority by dynamic programming is called as
prioritized sweeping of drift environment, which is shown as in
Algorithm 3.

Remark 5: Prioritized sweeping [38] is a specific algorithm
that does asynchronous Bellman backups in areas where the
value functions would make the largest change. The agent uses
each state-action-reward-state experience to not only update
the policy, but also simultaneously learn a predictive model
of the environment to concurrently train the policy. In the IRL
algorithm, compared with the original environment, the value
functions of the drift environment would have the largest change
in the new environment, and we give top priority to this area
for updating. We adopt the name of prioritized sweeping in our
method regarding the conceptual similarity.

D. Integrated IRL Algorithm

With the detection and prioritized sweeping techniques
for drift environment, an integrated IRL algorithm is shown

as in Algorithm 4. First, in the original environment, the
RL agent obtains the optimal policy π∗ and value func-
tions Q(s, a),∀(s, a) ∈ (S,A), and constructs the environment
model E(S,A,R, P) through a standard Q-learning process
in Lines 1–13. Second, after any environment drift is detected
in the form of changed rewards, the drift environment is con-
structed as Ed(Sd,Ad,Rd, Pd) in Line 14, and generates new
data in the new environment. Third, the value functions of the
drift part in the new environment tend to have the largest change
since the drift environment is the source of new data, whereas
the value functions of the neighbor environment have relatively
smaller change on the influence of the drift environment. There-
fore, we give priority to the m-degree neighbor environment of
drift environment Em

dn (Sdn ,Adn ,Rdn , Pdn) to sweep the value
functions using dynamic programming in Lines 15–16. Finally,
we initialize the value functions of the new environment with
the combination of the value functions of Qdn and Q∗ in Line
17. The part ofEm

dn with prioritized sweeping stands for the new
information along with the weakened conflict. The part of the
original environmentE stands for the existing knowledge to ac-
celerate the learning process in the new environment. Based on

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: INCREMENTAL REINFORCEMENT LEARNING WITH PRIORITIZED SWEEPING FOR DYNAMIC ENVIRONMENTS 627

this mechanism of fusing the new information into the existing
knowledge system, the agent restarts a standard Q-learning pro-
cess and computes the new optimal policy π∗n in an incremental
way in Lines 18–29.

Remark 6: Generally, there are two more direct methods for
RL in dynamic environments: 1) Regenerate a completely new
learning process without using any existing knowledge (RL
without π∗old method); 2) Restart an RL process directly based
on the existing knowledge without prioritized sweeping (RL
with π∗old method). In principle, the RL without π∗old method
works, since it learns from scratch whenever the environment
changes. However, it is infeasible in many data-intensive ap-
plications due to limited memory and computational resources.
On the other hand, the RL with π∗old method would spend an
extraordinary amount of time to fix the conflict and get out of
the trap of previous optimal policy in spite of making use of ex-
isting knowledge. The new learning process of IRL is executed
after inexplicitly initializing the value functions computed from
the original environment and the sweeping process, which pro-
vides a jump-up improvement and a right direction toward the
new optimum for the new learning process. The whole learn-
ing scheme is a tradeoff between exploitation of the designed
initialization and exploration of the new environment. In the
worst case, IRL is comparable to a standard Q-learning process
where we initialize the value functions arbitrarily and learn from
scratch, since there is no benefit from the exploitation of the ex-
isting knowledge. Therefore, the convergence of the proposed
IRL algorithm is the same as that of the classical Q-learning.
The learning performance of IRL is at least comparable to a
classical Q-learning process, whereas in many cases, it is much
better.

Remark 7: The proposed IRL algorithm consists of two key
parts. One is to make use of the existing knowledge and the other
is to fuse the new information into the existing knowledge sys-
tem. Since we use new rewards observed by the detector-agent
in the sweeping process and previous optimal value functions
of the original environment, the new information is fused into
the existing knowledge system through iteratively updating the
value functions of this inexplicit environment model. We use dy-
namic programming for the prioritized sweeping process with
the partly known environment model in spite of its inexplic-
itness and incompleteness. Thereafter, the RL agent restarts a
new learning process and converges to a new optimal policy π∗n
with accelerated speed.

IV. EXPERIMENTAL RESULTS ON MAZE BENCHMARKS

Several groups of experiments on classical maze naviga-
tion problems are carried out to evaluate the proposed algo-
rithm. We compare IRL to two direct methods: RL without
π∗old method and RL with π∗old method. Additionally, we use
the PRQ-learning [19] as the main transfer learning method for
comparison, since it is most relevant and comparable to our IRL
algorithm. Besides, we also compare IRL with various state-of-
the-art transfer learning methods including policy transfer us-
ing reward shaping (PTS) [21], stochastic abstract policy (SAP)
[23], and Bayesian policy reuse (BPR) [24].

Fig. 3. Simple maze environments. (a) Original environment. (b) New
environment.

A. Experimental Settings

For all the experiments, the two-dimensional (2-D) coordi-
nate (i, j) of the map stands for the state s and in each state
the agent has four possible actions a: up, down, left, and right.
When executing an available action a in state s and then transit-
ing to state s′, the agent receives an immediate reward r(s, a) of
100 (when the agent reaches the target state),−100 (if the agent
hits on the walls or the obstacles and bounces to its previous
states) or −0.1 (otherwise). The parameter settings for the one-
step Q-learning are the same for all algorithms: learning rate
α = 0.01, discount factor γ = 0.95. For each group of exper-
iments, different exploration strategies including ε-greedy and
Softmax methods [1] are applied to investigate the performance
of the proposed IRL algorithm. For PRQ-learning, ψh = 1.0,
υ = 0.95, and τ is initialized to 0, and incremented by 0.05 in
each episode. More details about the definitions of these param-
eters in PRQ-learning can be found in [19]. All the experiments
are carried out on an Intel Core i5-6500 3.20 GHz PC with
8G main memory under Windows 7. The experimental results
presented in this paper are averaged over 100 runs.

B. Simple Maze

As shown in Fig. 3, the simple maze consists of a 12× 12
grid map. Ṡ : (6, 2) is the start point and Ġ : (2, 3) is the goal
point, and the gray grids stand for the walls or the obstacles.
In the new environment, the grids (5, 4) and (5, 5) are set as
obstacles indicating environment drift.

First, we test the algorithms with ε-greedy exploration strat-
egy. By experience, we set ε = 0.1 first, and after the algorithms
converge to around the new optimal policy (about 800 episodes),
we decrease it to 0. As shown in Fig. 4, compared with RL
without π∗old method, RL with π∗old method achieves an even
worse performance, since the conflict is so serious that the agent
needs more time to fix it. PRQ-learning achieves an intermedi-
ate performance between the two direct methods, since it seeks
a tradeoff between exploring the new environment and exploit-
ing the past policy in the original environment. The two direct
methods and PRQ-learning have spent a large number of learn-
ing steps before converging to the new optimal policy, while
the learning steps of IRL stay very close to the minimum dur-
ing the whole new learning process. The reason is that, after

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

628 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019

Fig. 4. Performance of ε-greedy exploration strategy in the simple
maze.

Fig. 5. Performance of the Softmax exploration strategy in simple maze
with different initial values of the temperature parameter τ . (a) Initial τ =
30. (b) Initial τ = 15.

prioritized sweeping of the drift environment, the initial distri-
bution of value functions has been very close to the optimal one
for the new environment and the agent takes only small effort
for converging to the new optimal policy.

We also test the algorithms using the Softmax exploration
strategy with different initial temperature parameters (τ =
30, 25, 20, 15, respectively). Fig. 5 shows the performance with
initial τ = 30 and τ = 15. When τ decreases from 30 to 15
gradually, the results show that: 1) the performance is almost
the same for RL without π∗old and PRQ-learning; 2) for RL
with π∗old , more exploitation of existing knowledge leads to
greater conflict between new information and existing knowl-
edge, and the learning performance decreases significantly as the
initial exploration ratio τ decreases; 3) for IRL, with weakened
conflict in advance, more exploitation of existing knowledge
will accelerate the learning process and the learning perfor-
mance tends to improve a little as the initial exploration ratio τ
decreases.

Compared with the ε-greedy strategy, the Softmax strategy
depends more on the distribution of the value functions (the ex-
isting knowledge). The process of prioritized sweeping of drift
environment aims at adjusting the previous distribution of value
functions in order to guide it toward the right optimal one in the
new environment. Therefore, by means of closer relationship
with the distribution of value functions, IRL with Softmax ex-
ploration strategy obtains better results than that with ε-greedy
strategy from the exploitation of the existing knowledge and the
prioritized sweeping process.

The learning results are further implemented using a CR-
6 hexapod robot in the same maze environments as shown

Fig. 6. Implementation of a hexapod robot navigating in the simple
maze. (a) Original environment. (b) New environment.

in Fig. 3. The specifications of the CR-6 hexapod robot are:
1) three degrees of freedom in each leg; 2) an HC-SR04 sonar
sensor in each leg, with a sensitive range of 0.02 ∼ 4.50 m; and
3) an OV7670 camera at the top, with a rate of 30 frame/s, 0.3M
pixels and the USB interface. In practice, the mobile robot scans
the room using the camera to draw 2-D maps of the environ-
ments. The maps obtained by the simultaneous localization and
mapping are rasterized and imported to the computing platform
for learning the corresponding optimal policies. Following the
learned policies, the robot walks from the start point to the goal
by the control units. Consistent with the simulation part, the real
navigation performance is shown as in Fig. 6 and successfully
verifies the learned optimal policies in the original and the new
environments, respectively.

C. Benchmark Maze

A 22× 22 maze problem [38] as shown in Fig. 7 is adopted
to test the proposed IRL algorithm for complex problems. As
an example, the grid (11, 9) can be set as an obstacle indi-
cating environment drift, which leads to previous converged
optimal policy to a new one in the new environment. We utilize
a statistical analysis method to address the issue of stochastic
environment drift. In each test, we randomly select the grid cells
to change: a blank cell becomes an obstacle or an obstacle be-
comes navigable. Both the dynamic drifts can be attributed to
the type of reward change. The number of cells changed at one
time is no more than 3. We repeat the process for 30 times and
average the results to demonstrate the performance of all the
test algorithms.

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: INCREMENTAL REINFORCEMENT LEARNING WITH PRIORITIZED SWEEPING FOR DYNAMIC ENVIRONMENTS 629

Fig. 7. Model of the complex maze. Grid (11, 14) indicates the envi-
ronment drift, which leads to the previous optimal policy (black arrows)
changing to a new one (red arrows).

Fig. 8. Performance with different exploration strategies in the complex
maze. (a) ε-greedy. (b) Softmax.

In the first stage, we compare our IRL algorithm to the two
direct methods and PRQ-learning. As shown in Fig. 8, the advan-
tage of IRL for the complex maze example is even greater than
that for the simple maze example regarding the computational
time, since IRL can exploit more from the existing knowledge
in larger state-action spaces. RL with π∗old method has better
performance than RL without π∗old method, which is opposite
to the simple maze case. Intuitively, in the complex maze with
a larger state-action space, the conflict is not so serious and the
agent still benefits a little from exploiting existing knowledge
in spite of fixing the conflict with many trials. PRQ-learning
still gains an intermediate performance between the two direct
methods.

In the second stage, the proposed IRL algorithm is compared
to various state-of-the-art transferring learning methods using
both exploration strategies, as shown in Fig. 9. It can be observed
that all the tested transfer learning algorithms did not achieve
good performance compared with the IRL algorithm. Transfer
learning aims at transferring the universal knowledge learned
from a set of source tasks to a target task. It helps improve the
learning performance in a generalization sense. PRQ-learning,

Fig. 9. Further comparison with various transfer learning algorithms.
(a) ε-greedy. (b) Softmax.

TABLE II
RUNNING TIME (SECONDS) OF ALL TESTED ALGORITHMS

D1: RL without π ∗o ld , D2: RL with π ∗o ld , DD: drift detection, PS: prioritized sweeping.

as well as other most advanced transfer learning algorithms, is
intrinsically a tradeoff between exploitation of the transferred
past policies (RL with π∗old) and exploration of the new envi-
ronment (RL without π∗old). Hence, it does not help improve
the learning performance in these experiments. In addition, the
negative transferred knowledge may hinder the new learning
process due to the conflict. On the other hand, IRL first detects
the drift part that potentially contains negative transfer and then
it adjusts the previous optimal policy to a new one toward the
right direction.

Additionally, we estimate the average running time of all the
tested algorithms as shown in Table II. It can be clearly observed
that, compared to all the other algorithms, our IRL algorithm
achieves a significant reduction in running time and accelerates
the RL process in dynamic environments. With respect to the
theoretical analysis in Section III-B, it can be verified experi-
mentally that the drift detection process requires only a relatively
small amount of computational time.

V. APPLICATION TO AN INTELLIGENT WAREHOUSE

To further test the performance of the proposed IRL algo-
rithm, we apply it to an intelligent warehouse system. Recently,
multirobot systems have been widely studied for various po-
tential applications [39], [40] and autonomous guided vehicles
have been used to perform tasks in intelligent warehouses for
more than 50 years [41], [42]. For example, as shown in Fig. 10,
the large-scale Kiva robots system [41] has been a promising
application for commercial automatic transportation in Amazon
warehouses in recent years.

In this paper, we adopt a 12-robot simulation platform as
an example to test the proposed IRL algorithm. As shown in
Fig. 11, each storage shelf consists of several inventory pods
and each pod consists of several resources. By order, a robot
lifts and carries a pod at a time along with a preplanned path
from the starting point Si to the goal Gi (i = 1, 2, . . . , 12),
delivers it to the specific service stations, which are appointed
in the order and finally returns the pod back. In real applications,

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

630 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019

Fig. 10. Portion of a Kiva warehouse [41].

Fig. 11. Model of a Kiva intelligent warehouse system with 12 mobile
robots. (a) Original environment. (b) New environment.

the storage shelves and the picking stations may change over
time. Moreover, in MARL problems [15], the environment of an
RL robot may change due to the movements of other RL robots.
All these factors will cause environment drift (rewards change)
and the mobile robots have to adapt to dynamic environments
in the real world.

We test the IRL algorithm on all the 12 robots in the sim-
ulated dynamic environment, and average the performance of
the 12 robots as shown in Fig. 12. All the experimental settings
are the same as those introduced in Section IV-A. By compari-
son, IRL gains a much better performance regarding the average
learning steps in each episode toward the optimal policy. Com-
pared with the RL without π∗old method, IRL can make use of
existing knowledge so that the agent does not have to spend
too many trials to explore the new environment from scratch.

Fig. 12. Averaged learning performance of 12 robots with different
exploration strategies for the intelligent warehouse system. (a) ε-greedy,
(b) Softmax.

Compared with the RL with π∗old method, IRL can weaken the
conflict in advance so that the agent does not need to spend a
large amount of time to fix the conflict and get out of the trap
of the previous optimal policy. Compared with PRQ-learning
and other transfer learning methods, IRL takes both of the two
advantages. By means of fusing the new information into the
existing knowledge system and weakening the conflict between
them in advance, IRL learns the nonstationary knowledge over
time in an incremental way and dramatically improves the adapt-
ability and efficiency of RL in dynamic environments.

VI. CONCLUSION

In this paper, we propose a systematic IRL algorithm un-
der the challenging scenario where the learning environment
changes in the reward function. First, a detector-agent is gener-
ated to detect the drift environment by executing a virtual RL
process. Then, IRL gives priority to the drift environment and
its neighbor environment for value iteration, using the newly ob-
served rewards. After this priority sweeping process, IRL con-
tinues to implement a canonical learning process to obtain a new
optimal policy adapting to the new environment. An IRL agent
fully utilizes the existing knowledge system while avoiding be-
ing trapped by the previous converged policy, thus enabling a
fast adaptation to the changes of the external environment. The
proposed IRL algorithm provides an appealing option for sav-
ing a significant amount of computational resources, while the
dynamic environment scenario is supposed to hold for many
challenging real-world domains.

We adopt the widely used Q-learning algorithm as the basic
implementation for IRL, which can be extended to other specific
RL algorithms (e.g., SARSA [43]) in principle. Our future work
will focus on the statistical analysis of IRL in more complex
dynamic environments and automatical optimal selection of the
neighborhood degree m.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[2] R. S. Sutton, “Learning to predict by the methods of temporal differences,”
Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

[3] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, nos. 3/4,
pp. 279–292, 1992.

[4] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.
Learn. Res., vol. 4, pp. 1107–1149, 2003.

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: INCREMENTAL REINFORCEMENT LEARNING WITH PRIORITIZED SWEEPING FOR DYNAMIC ENVIRONMENTS 631

[5] K.-S. Hwang, C.-Y. Lo, and G.-Y. Lee, “A grey synthesis approach to ef-
ficient architecture design for temporal difference learning,” IEEE/ASME
Trans. Mechatronics, vol. 16, no. 6, pp. 1136–1144, Dec. 2011.

[6] Y. Wang, H. Lang, and C. W. De Silva, “A hybrid visual servo con-
troller for robust grasping by wheeled mobile robots,” IEEE/ASME Trans.
Mechatronics, vol. 15, no. 5, pp. 757–769, Oct. 2010.

[7] E. Rombokas, M. Malhotra, E. A. Theodorou, E. Todorov, and Y. Mat-
suoka, “Reinforcement learning and synergistic control of the act hand,”
IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 569–577, Apr. 2013.

[8] Y. Wang and C. W. de Silva, “Sequential Q-learning with Kalman filtering
for multirobot cooperative transportation,” IEEE/ASME Trans. Mecha-
tronics, vol. 15, no. 2, pp. 261–268, Apr. 2010.

[9] D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum reinforcement learn-
ing,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 5, pp. 1207–
1220, Oct. 2008.

[10] C. Chen, D. Dong, H.-X. Li, J. Chu, and T.-J. Tarn, “Fidelity-based prob-
abilistic Q-learning for control of quantum systems,” IEEE Trans. Neural
Networks Learn. Syst., vol. 25, no. 5, pp. 920–933, May 2014.

[11] D. Dong, C. Chen, J. Chu, and T.-J. Tarn, “Robust quantum-inspired
reinforcement learning for robot navigation,” IEEE/ASME Trans. Mecha-
tronics, vol. 17, no. 1, pp. 86–97, Feb. 2012.

[12] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[14] M. A. K. Jaradat, M. Al-Rousan, and L. Quadan, “Reinforcement based
mobile robot navigation in dynamic environment,” Robot. Comput.-Integr.
Manuf., vol. 27, no. 1, pp. 135–149, 2011.

[15] L. Zhou, P. Yang, C. Chen, and Y. Gao, “Multiagent reinforcement learning
with sparse interactions by negotiation and knowledge transfer,” IEEE
Trans. Cybern., vol. 47, no. 5, pp. 1238–1250, May 2017.

[16] A. K. Agogino and K. Tumer, “Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains,” Auton. Agents Multi-Agent
Syst., vol. 17, no. 2, pp. 320–338, 2008.

[17] M. Rahimiyan and H. R. Mashhadi, “An adaptive Q-learning algorithm
developed for agent-based computational modeling of electricity market,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 5, pp. 547–556,
Sep. 2010.

[18] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learn-
ing domains: A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
2009.

[19] F. Fernández, J. Garcı́a, and M. Veloso, “Probabilistic policy reuse for
inter-task transfer learning,” Robot. Auton. Syst., vol. 58, no. 7, pp. 866–
871, 2010.

[20] G. Konidaris, I. Scheidwasser, and A. Barto, “Transfer in reinforcement
learning via shared features,” J. Mach. Learn. Res., vol. 13, pp. 1333–1371,
2012.

[21] A. Fachantidis, I. Partalas, G. Tsoumakas, and I. Vlahavas, “Transferring
task models in reinforcement learning agents,” Neurocomputing, vol. 107,
pp. 23–32, 2013.

[22] T. T. Nguyen, T. Silander, Z. Li, and T.-Y. Leong, “Scalable transfer
learning in heterogeneous, dynamic environments,” Artif. Intell., vol. 247,
pp. 70–94, 2017.

[23] M. L. Koga, V. Freire, and A. H. Costa, “Stochastic abstract policies:
Generalizing knowledge to improve reinforcement learning,” IEEE Trans.
Cybern., vol. 45, no. 1, pp. 77–88, Jan. 2015.

[24] B. Rosman, M. Hawasly, and S. Ramamoorthy, “Bayesian policy reuse,”
Mach. Learn., vol. 104, no. 1, pp. 99–127, 2016.

[25] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream data,”
IEEE Trans. Neural Networks, vol. 22, no. 12, pp. 1901–1914, Dec. 2011.

[26] G. A. Carpenter and S. Grossberg, “The art of adaptive pattern recognition
by a self-organizing neural network,” Computer, vol. 21, no. 3, pp. 77–88,
1988.

[27] R. Elwell and R. Polikar, “Incremental learning of concept drift in non-
stationary environments,” IEEE Trans. Neural Networks, vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[28] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for
robust visual tracking,” Int. J. Comput. Vis., vol. 77, nos. 1–3, pp. 125–141,
2008.

[29] C.-X. Ren and D.-Q. Dai, “Incremental learning of bidirectional princi-
pal components for face recognition,” Pattern Recognit., vol. 43, no. 1,
pp. 318–330, 2010.

[30] S. Yang and X. Yao, “Population-based incremental learning with asso-
ciative memory for dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 12, no. 5, pp. 542–561, Oct. 2008.

[31] S.-U. Guan and F. Zhu, “An incremental approach to genetic-algorithms-
based classification,” IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 35,
no. 2, pp. 227–239, Apr. 2005.

[32] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental
learning of full body motion primitives and their sequencing through
human motion observation,” Int. J. Robot. Res., vol. 31, no. 3, pp. 330–
345, 2012.

[33] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” Mach.
Learn., vol. 22, nos. 1–3, pp. 226–232, 1994.

[34] T. Mori and S. Ishii, “Incremental state aggregation for value function
estimation in reinforcement learning,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 41, no. 5, pp. 1407–1416, Oct. 2011.

[35] R. Zajdel, “Epoch-incremental reinforcement learning algorithms,” Int. J.
Appl. Math. Comput. Sci., vol. 23, no. 3, pp. 623–635, 2013.

[36] T. Taniguchi and T. Sawaragi, “Incremental acquisition of behaviors
and signs based on a reinforcement learning schemata model and a
spike timing-dependent plasticity network,” Adv. Robot., vol. 21, no. 10,
pp. 1177–1199, 2007.

[37] Z. Wang, C. Chen, H.-X. Li, D. Dong, and T.-J. Tarn, “A novel incremental
learning scheme for reinforcement learning in dynamic environments,” in
Proc. 12th World Congr. Intell. Control Autom., 2016, pp. 2426–2431.

[38] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,” Mach. Learn., vol. 13, no. 1, pp. 103–
130, 1993.

[39] M. A. Neumann and C. A. Kitts, “A hybrid multirobot control architecture
for object transport,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 6,
pp. 2983–2988, Dec. 2016.

[40] A.-R. Merheb, V. Gazi, and N. Sezer-Uzol, “Implementation studies
of robot swarm navigation using potential functions and panel meth-
ods,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 5, pp. 2556–2567,
Oct. 2016.

[41] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29, no. 1,
pp. 9–20, 2008.

[42] X. Zhai, J. E. Ward, and L. B. Schwarz, “Coordinating a one-warehouse
n-retailer distribution system under retailer-reporting,” Int. J. Prod. Econ.,
vol. 134, no. 1, pp. 204–211, 2011.

[43] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist
systems,” Tech. Rep. 166, Dept. Eng., Univ. Cambridge, Cambridge, U.K.,
1994, vol. 37.

Zhi Wang received the B.E. degree in automa-
tion from the Department of Control and Sys-
tems Engineering, Nanjing University, Nanjing,
China, in 2015. He is currently working to-
ward the Ph.D. degree with the Department of
Systems Engineering and Engineering Manage-
ment, City University of Hong Kong, Hong Kong,
China.

His current research interests include re-
inforcement learning, machine learning, and
robotics.

Chunlin Chen (S’05–M’06) received the B.E.
degree in automatic control and Ph.D. degree in
control science and engineering from the Univer-
sity of Science and Technology of China, Hefei,
China, in 2001 and 2006, respectively.

He is currently a Professor and the Head of
the Department of Control and Systems Engi-
neering, School of Management and Engineer-
ing, Nanjing University, Nanjing, China. He was
with the Department of Chemistry, Princeton
University from September 2012 to September

2013. He had visiting positions with the University of New South Wales
and City University of Hong Kong. His current research interests include
machine learning, intelligent control, and quantum control.

Dr. Chen is the Co-chair of Technical Committee on Quantum Cyber-
netics, IEEE Systems, Man, and Cybernetics Society.

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

632 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 24, NO. 2, APRIL 2019

Han-Xiong Li (S’94–M’97–SM’00–F’11) re-
ceived the B.E. degree in aerospace engineering
from the National University of Defense Technol-
ogy, Changsha, China, in 1982, the M.E. degree
in electrical engineering from Delft University
of Technology, Delft, The Netherlands in 1991,
and the Ph.D. degree in electrical engineering
from the University of Auckland, Auckland, New
Zealand, in 1997.

He is a Professor with the Department of
SEEM, City University of Hong Kong, Hong

Kong. He has a broad experience in both academia and industry. He has
authored 2 books and about 20 patents, and published more than 200
SCI journal papers with h-index 42 (web of science). His current research
interests include process modeling and control, system intelligence, dis-
tributed parameter systems, and battery management system.

Dr. Li serves as Associate Editor for the IEEE TRANSACTIONS ON
SYSTEMS, MAN, AND CYBERNETICS: SYSTEM, and was Associate Edi-
tor for the IEEE TRANSACTIONS ON CYBERNETICS (2002–2016), and the
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS (2009–2015). He was
awarded the Distinguished Young Scholar (overseas) by the China Na-
tional Science Foundation in 2004, a Chang Jiang professorship by the
Ministry of Education, China, in 2006, and a national professorship in
China Thousand Talents Program in 2010. He serves as a Distinguished
Expert for Hunan Government and China Federation of Returned Over-
seas Chinese.

Daoyi Dong (S’05–M’06–SM’11) received the
B.E. degree in automatic control and the Ph.D.
degree in engineering from the University of Sci-
ence and Technology of China, Hefei, China, in
2001 and 2006, respectively.

He is currently an Associate Professor and
Scientia Fellow with the University of New South
Wales, Canberra, Australia. He was with the In-
stitute of Systems Science, Chinese Academy
of Sciences and with the Institute of Cyber-
Systems and Control, Zhejiang University. He

had visiting positions with Princeton University, Princeton, NJ, USA,
RIKEN, Wako-Shi, Japan and The University of Hong Kong, Hong Kong.
His research interests include quantum control, multiagent systems, and
machine learning.

Dr. Dong received an ACA Temasek Young Educator Award by The
Asian Control Association, the International Collaboration Award, and an
Australian Postdoctoral Fellowship from the Australian Research Coun-
cil. He is also a co-recipient of Guan Zhao-Zhi Award at The 34th Chinese
Control Conference, and the Best Theory Paper Award at The 11th World
Congress on Intelligent Control and Automation. He serves as an Asso-
ciate Editor of IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING
SYSTEMS. He is the General Chair of the First Quantum Science, Engi-
neering and Technology Conference.

Tzyh-Jong Tarn (M’71–SM’83–F’85–LF’05) re-
ceived the D.Sc. degree in control system engi-
neering from Washington University in St. Louis,
St. Louis, MO, USA.

He is a Senior Professor with the Department
of Electrical and Systems Engineering, Wash-
ington University in St. Louis.

Prof. Tarn received the NASA Certificate of
Recognition for the creative development of a
technical innovation on robot arm dynamic con-
trol by computer in 1987. He also received the

Best Paper Award at the 1995 IEEE/RSJ International Conference on
Intelligent Robots and Systems. He is the first recipient of both the
Nakamura Prize and the Ford Motor Company best paper award at the
Japan/USA Symposium on Flexible Automation in 1998. In addition, he
received the prestigious Joseph F. Engelberger Award of the Robotic In-
dustries Association in 1999, the Auto Soft Lifetime Achievement Award
in 2000, and the Pioneer in Robotics and Automation Award in 2003 from
the IEEE Robotics and Automation Society. He served as the President
of the IEEE Robotics and Automation Society (1992–1993), the Director
of the IEEE Division X (1995–1996), and was a Member of the IEEE
Board of Directors (1995–1996).

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2020 at 02:10:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

