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Incremental Spatiotemporal Learning for Online
Modeling of Distributed Parameter Systems

Zhi Wang and Han-Xiong Li, Fellow, IEEE

Abstract—An incremental spatiotemporal learning scheme is
proposed for online modeling of distributed parameter systems
(DPSs). A novel incremental learning method is developed to
recursively update the spatial basis functions and the correspond-
ing temporal model based on the Karhunen–Loève decomposition
for time-space separation. The time-space synthesis continually
evolves by adding new increment data with more updated infor-
mation and revising the existing parameters of the dynamic
system. In this way, the spatiotemporal structure is inherited
and updated efficiently as output data increases over time. The
adaptive nature of this evolving structure makes it promising
for online modeling of DPSs under streaming data environment.
The proposed incremental modeling scheme is evaluated on the
classical benchmark of a catalytic rod problem. The simulation
results demonstrate the viability and efficiency of the proposed
method for online modeling of DPSs.

Index Terms—Distributed parameter systems (DPSs), incre-
mental learning, Karhunen–Loève decomposition (KLD), online
spatiotemporal modeling.

I. INTRODUCTION

D ISTRIBUTED parameter systems (DPSs) are a com-
mon kind of industrial processes where the input and

output may vary in both time and space dimension [1].
Despite of the difficulty, modeling such complex systems
is essential to industrial simulation, control, and optimiza-
tion [2]–[4]. Modeling and control of such spatiotemporal
systems has been widely investigated in practice due to recent
developments in sensor, actuator, and computing technology.
The first-principle description for known DPS convention-
ally leads to the mathematical partial differential equation
(PDE). Since the PDE system is infinite-dimensional, the
model reduction complements are always indispensable for
real implementation.

The time-space separation methods have been verified
to be an efficient model reduction method in modeling of
unknown DPSs [5]–[11]. In these spatiotemporal model-
ing methods, Karhunen–Loève decomposition (KLD) is first
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utilized for the time-space separation, where the spatiotem-
poral output is decomposed into a set of dominant spatial
basis functions (BFs) with corresponding temporal coeffi-
cients. Second, a reduced-order temporal model is identified
from the decomposed low-dimensional data. The temporal
structure can be approximated by various identification tech-
niques, such as nonlinear autoregressive with exogenous input
(NARX) model [12] Hammerstein model [5], neural networks
(NNs) [7], [8], and so on. Finally, the spatiotemporal dynamics
can be reconstructed and predicted over the whole time-space
domain through the time-space pairwise data reconstruction of
the reduced-order model.

In traditional spatiotemporal modeling, the KLD process
and temporal structure identification are performed in the
so-called batch-mode. The output data over the whole time
domain has to be ready for time-space separation during the
model training stage. The modeling procedure stops once the
whole batch of spatiotemporal outputs has been fully pro-
cessed. These methods assume that all the output data is
available and accessible at the beginning of the modeling pro-
cess. Therefore, they are feasible for offline implementations
only. Nevertheless, in online settings, new streaming data will
be available continually, even after the spatiotemporal model
having been identified at a certain moment. If we want to
incorporate additional new output data into the existing time-
space synthesis, the time-space separation process should be
restarted from scratch with all the new and the old train-
ing data, which is called as “batch-mode” shown in Fig. 1.
Since the number of training data is growing constantly, the
batch-mode method is only feasible at the cost of retraining
the whole time-space synthesis with time-consuming proce-
dures and great storage burden. Although some DPSs may
have relatively slow dynamics, making such retraining scheme
feasible. It is difficult to characterize it as adaptation, espe-
cially with respect to the model structure of the time-space
synthesis. In fact, it is a procedure where completely new
reduced-order models are repeatedly generated from scratch
given the accumulated data with growing length.

From the aspect of computational efforts, calculating the
Karhunen–Loève basis for L time steps of N spatial measure-
ments requires roughly O(NL) memory units and O(L3) flops.
The growing data length L results in superlinearly increas-
ing computational complexity and linearly increasing storage
capacity for batch-mode method. In many real applications,
this large storage requirements and computational demands
may be prohibitive. Moreover, acquisition of representative
training data is expensive and time-consuming. It is common
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for such data available only in small increments over a period
of time, and the previously visited data may be unaccessible
in consideration of online storage. Under the circumstances,
either we are not capable of collecting all the training data for
time-space separation, or the time-space synthesis is identified
from scratch inefficiently using all the data.

We can see that the batch calculation nature of the spa-
tiotemporal modeling methods has limited their applications.
It is an important obstacle in designing online modeling meth-
ods for distributed processes, since the traditional methods are
still not adaptive. In turn, it is hard to scale up the developed
modeling systems. An adaptive method of modeling DPSs
is needed for online settings to overcome the above chal-
lenges of streaming data and computational limits. A new
modeling scheme should be developed with the capability
of evolving the time-space synthesis as the process contin-
ues on. The model structure is supposed to be inherited and
updated whenever the new data increment is available. The
new information carried by the new data should be added
into the existing model structure in an incremental way, i.e.,
incremental learning.

Recent years have witnessed an increasing interest in the
topic of incremental learning from both academia and industry.
Incremental learning has been widely addressed in machine
learning and intelligent control communities to cope with
learning tasks, where the training data becomes available
over time or the learning environment is ever-changing [13].
Various methods have been suggested for incremental learn-
ing regarding various problems in different areas, including
unsupervised learning [14], supervised learning [15], rein-
forcement learning [16], machine vision [17], evolutionary
algorithms [18], and human–robot interaction [19].

For model reduction of DPSs, there are several results
reported regarding the concept of recursive, or adaptive, or
incremental methods. Li et al. [20] proposed a recursive
principle component analysis approach based on updating
the correlation matrix recursively. Varshney et al. [21] and
Pourkargar and Armaou [22], [23] developed a kind of
adaptive proper orthogonal decomposition on the base of
updating the BFs through orthonormalization of the dominant
eigenspace of the covariance matrix. The algorithm requires
the dimensionality of the covariance matrix to remain con-
stant by discarding the oldest snapshots, which leads to a
certain loss of the system’s dynamics. Xu et al. [24] pro-
posed a recursive proper orthogonal decomposition approach
through gradient search of the new eigenspace, which aims
at minimizing the approximation error. Sequently, they pro-
posed a rank-1 incremental proper orthogonal decomposition
method [25] and [26] based on expansion and transforma-
tion of the eigenspace by the normalized residue vector. These
methods are mostly based on analysis of the covariance matrix,
which requires access to all the historical data. Meantime,
some of them may have deficiencies, such as information loss,
limitation to rank-1 updating, and local minimum.

Regarding to spatiotemporal modeling of DPSs, there are
few results reported concerning the incremental learning
method, which is exactly needed for online modeling in envi-
ronments of streaming data. Although there are several works

Fig. 1. Traditional batch-mode modeling versus proposed incremental-mode
modeling.

proposing the concept of incremental modeling of DPSs [27],
they refer in particular to adding the hierarchical spatiotempo-
ral kernels incrementally, which is completely different from
our proposed incremental algorithm for online modeling. The
purpose of this paper is to present such incremental modeling
methodology and results of their applications to a number of
test cases.

The intuitive concept of proposed incremental learning
methodology for online spatiotemporal modeling is as shown
in Fig. 1, along with the comparison to conventional batch-
mode modeling. In online settings, assume that the mod-
eling procedure is processed continually at set time steps
(. . . , ti−1, ti, ti+1, . . .). For the batch-mode method, completely
new time-space syntheses (. . . , T/S(i−1), T/S(i), T/S(i+1), . . .)
are trained from scratch after collecting the whole batch
data (. . . , BD(i−1), BD(i), BD(i+1), . . .). While for our pro-
posed incremental modeling method, the time-space synthesis
is inherited and updated in a computationally effective way by
adding the new increment data (. . . , ID(i−1), ID(i), ID(i+1), . . .)
into the existing model structure incrementally. It is not
required to store the entire time series of training data before
proceeding to the time-space separation, and this evolving
structure is capable of approximating and adapting to the
system’s dynamics well in real-time.

In order to demonstrate the performances of the proposed
incremental modeling algorithm, simulated experiments are
carried out on the benchmark of a catalytic rod problem.
We compare the incremental modeling algorithm with con-
ventional batch-mode method to illustrate the feasibility and
advantages of the incremental learning property. Both the-
oretical analysis and experimental results will demonstrate
that the proposed incremental modeling methodology achieves
good online performances, as well as being computationally
effective.

The rest of this paper is organized as follows. In Section II,
the problem description of online modeling is introduced. In
Section III, we present the concept and technical details of
the proposed incremental spatiotemporal learning scheme for
online modeling, accompanied by illustrations of complex-
ity analysis and main advantages. Experimental results are
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demonstrated in Section IV, and the conclusions are presented
in Section V.

II. PROBLEM DESCRIPTION

In this paper, a general class of DPSs is considered, which
can be represented by the following nonlinear PDE:

∂y(x, t)

∂t
= L

(
y,

∂y

∂x
,
∂2y

∂x2
, . . . ,

∂n0y

∂xn0

)
+ B̄(x)u(t) (1)

subject to the mixed-type boundary conditions

q

(
y,

∂y

∂x
,
∂2y

∂x2
, . . . ,

∂n0−1y

∂xn0−1

)
|x=xa or x=xb= 0 (2)

and the initial condition

y(x, 0) = y0(x) (3)

where t ∈ [0,∞) is the temporal variable, x ∈ [xa, xb] ⊂ R is
the spatial coordinate, y(x, t) = [y(x1, t), . . . , y(xN, t)]T ∈ R

N

is the spatiotemporal output, and u(t) ∈ R
p is the temporal

input. L ∈ R
N is a complex vector function which contains

a nonlinear spatial differential operator of order n0, B̄(x) is
a matrix function of appropriate dimensions which describes
how the temporal inputs are distributed in spatial domains, q
is a nonlinear vector function, and y0(x) is a smooth vector
function referring to the initial output.

A common approach to modeling the unknown nonlinear
DPSs leads to the time-space separation framework [1], where
the spatiotemporal output y(x, t) can be decoupled into a set
of orthogonal spatial BFs ϕ(x) with corresponding temporal
coefficients a(t) as

y(x, t) =
∞∑

i=1

ϕi(x)ai(t). (4)

In practice, a finite nth-order of BFs {ϕi(x)}n
i=1 extracted

by KLD is used for capturing the most relevant dynamics
of the system. Then, the low-order temporal model F is
identified from the decomposed low-dimensional coefficients
{ai(t)}n

i=1 as

a(t) = F(a(t − 1), . . . , a(t − da), u(t − 1), . . . , u(t − du))

+ e(t) (5)

where du and da denote the maximum input and output lags,
respectively, and e(t) denotes the residual error. The detailed
description of spatiotemporal modeling can be found in the
Appendix.

Nevertheless, traditional spatiotemporal modeling methods
are only feasible for offline implementations since the time-
space synthesis is computed only once and remains fixed
afterwards. In an online environment, the time-space synthesis
is supposed to be retrained from scratch repeatedly when the
new data is available, which leads to a high computational
burden in real applications. For online modeling of DPSs,
an incremental learning mechanism is needed to inherit and
update the model structure efficiently whenever the new data
increment is available.

III. INCREMENTAL SPATIOTEMPORAL MODELING

A. Framework

In the online environment, the output data for modeling
is collected continuously, instead of being a fixed set. Some
parts of the new collected data may confirm and reinforce
the knowledge learned from the previous data; while other
parts may bring new information that is sufficiently different
from the learned knowledge, which could indicate complex
dynamics such as abnormal interference or changes in oper-
ating conditions. Online methods are supposed to be adaptive
to such dynamics of DPSs during their whole life cycles.

We present the technical details of the proposed incre-
mental spatiotemporal modeling scheme in this section. The
whole framework is shown in Fig. 2. The continuous streaming
data is collected into data increments (. . . , ID(i), ID(i+1), . . .)
at certain time steps (. . . , ti, ti+1, . . .). First, we propose
an efficient method that incrementally updates the spa-
tial BFs when a new data increment arrives. Second,
the temporal model is reidentified using the corresponding
updated temporal coefficients. Finally, we use the time-
space synthesis (. . . , T/S(i), T/S(i+1), . . .) with updated spatial
BFs and temporal model to reconstruct the historical data
(. . . , ĤD(i), ĤD(i+1), . . .), and to predict the future outputs
(. . . , ˆID(i+1), ˆID(i+2), . . .). Then we repeat the above proce-
dures whenever the next new increment of output data arrives.
In this incremental way, the new increment data is added to
the existing time-space synthesis continually. The modeling
structure and parameters are inherited and updated recursively
over time.

B. Online Updating of Time-Space Synthesis

Suppose that the output data at time tj(j = 1, . . . , L) is
an N-dimensional vector y(x, tj) = [y(x1, tj), . . . , y(xN, tj)]T ,
which is measured at N spatial locations. For simplicity, mark
yj = y(x, tj). The n-order spatial BFs, denoted as {ϕi}n

i=1,
are typically learned by time-space separation from a set of
training data Y1 = [y1, . . . , yL] for time steps of L.

The output data is generated continually, even after the time-
space synthesis has been learned at time step tL. Suppose
that the time-space synthesis should be processed at a new
time step tL+M , and Y2 = [yL+1, . . . , yL+M] is the new data
increment, for new time steps of M. For batch-mode method,
the time-space separation is reperformed from scratch by
KLD of the augmented data matrix Y = [Y1 Y2]. This
method is computationally expensive as the online process
generates more and more historical data. Instead, we derive
the concrete procedure on how the proposed method inher-
its and updates the time-space synthesis efficiently through
incremental learning.

According to (31), the original temporal correlation matrix
C can be written as

C = 1

L
YT

1 Y1. (6)

By singular value decomposition (SVD), the matrix YT
1 can be

decomposed into

YT
1 = U�VT . (7)
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Fig. 2. Incremental spatiotemporal modeling scheme for online modeling of DPSs.

Then C can be rewritten as

C = 1

L
U�VTV�UT = 1

L
U��TUT = U�UT (8)

where � = (1/L)��T is an L × L diagonal matrix. By KLD,
we choose the dominant n features which capture more than
99% of the system’s information according to (32). Then the
best rank-n approximation of C is

Cn = Un�nUT
n (9)

where Un is formed by the first n columns of U, and �n is
the nth leading principal submatrix of �. According to (28),
we can construct the n dominant BFs � = [ϕ1(x), . . . , ϕn(x)]
as

� = (
UT

n YT
1

)T = Y1Un. (10)

After identifying the dominant spatial BFs {ϕi(x)}n
i=1, the

corresponding temporal coefficients {ai(t)}n,L
i=1,t=1 of the spa-

tiotemporal output y(x, t) can be obtained using (23). Assume
that the acquired temporal coefficients matrix is An×L =
[a(1), . . . , a(L)], where a(t) = [a1(t), . . . , an(t)]T , t =
1, . . . , L, it can be verified that the output data Y1 is recon-
structed, as (Ŷ1)n, using spatial BFs � and the corresponding
temporal coefficients A (

Ŷ1
)

n = �A. (11)

When the new data Y2 is added and Y = [Y1, Y2], the new
temporal correlation matrix C̄ is

C̄ = 1

L + M
YTY = 1

L + M

[
YT

1 Y1 YT
1 Y2

YT
2 Y1 YT

2 Y2

]
. (12)

Suppose that the previous data Y1 is not accessible any more,
the new C̄ cannot be computed directly. Instead, we update the
eigenvectors of data matrix Y to compute the new BFs based
on the SVD-updating algorithm [37], [38] in an incremental
way.

As we known, YT
1 ∈ R

L×N , (YT
1 )L×N = U�VT , and its best

rank-n approximation (ŶT
1 )n = Un�nVT

n , where Un and Vn are

formed by the first n columns of U and V , respectively, and
�n is the nth leading principal submatrix of �. Next, we want

to carry out the SVD of a larger matrix

[
(YT

1 )L×N

(YT
2 )M×N

]
, where

YT
2 is an M × N matrix consisting of M additional rows.
Let the QR decomposition of (I − VnVT

n )Y2 be
(
I − VnVT

n

)
Y2 = QR (13)

where Q is orthonormal and R is the m × M upper triangular,
where m (m ≤ min(N, M)) is the rank of (I − VnVT

n )Y2. This
step projects the new rows YT

2 to the orthogonal complement
of the old right eigenvector subspace, i.e., span{Vn}. It can be
verified that

YT =
[(

YT
1

)
L×N(

YT
2

)
M×N

]
=

[
Un 0
0 IM

][
�n 0

YT
2 Vn RT

][
Vn Q

]T

(14)

noticing that [Vn Q] is orthonormal. Now, obtain the SVD
of the (n + M) × (n + m) matrix[

�n 0
YT

2 Vn RT

]
= Ũ�̃ṼT (15)

where Ũ ∈ R
(n+M)×(n+M) and �̃ ∈ R

(n+M)×(n+m), and Ṽ ∈
R

(n+m)×(n+m).
Then, the new temporal correlation matrix C̄ can be rewrit-

ten as

C̄ = 1

L + M
YTY

= 1

L + M

[
Un 0
0 IM

]
Ũ�̃ṼT[

Vn Q
]T

× [
Vn Q

]
Ṽ�̃TŨT

[
Un 0
0 IM

]T

=
([

Un 0
0 IM

]
Ũ

)(
1

L + M
�̃�̃T

)([
Un 0
0 IM

]
Ũ

)T

= Ū�̄ŪT (16)
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where the updated diagonal matrix �̄ = (1/L + M)�̃�̃T , and

the updated eigenvectors Ū =
[

Un 0
0 IM

]
Ũ. By KLD, we

choose the new dominant n′ features which capture more than
99% of the system’s information according to (32). The best
rank-n′ approximation of C̄ is

C̄n′ = Ūn′�̄n′ŪT
n′ (17)

where Ūn′ is formed by the first n′ columns of Ū, and �̄n′ is
the n′th leading principal submatrix of �̄.

In accordance with (28), we can update the previous n-
order BFs � = [ϕ1(x), . . . , ϕn(x)] to a new n′-order one as
�̄ = [ϕ̄1(x), . . . , ϕ̄n′(x)]

�̄ = (
ŪT

n′YT)T = [
Y1 Y2

]
Ūn′ . (18)

Since the complete information about the original data Y1 is
not accessible due to online storage, we use the best rank-n
approximation (11) to reconstruct the original data. Then the
new n′-order dominant BFs can be computed as

�̄ = [
�A Y2

]([
Un 0
0 IM

]
Ũn′

)
(19)

where Ũn′ is formed by the first n′ columns of Ũ. In this incre-
mental way, the old BFs � is transformed to an updated one
�̄ when the new increment of output data Y2 arrives, with-
out requirement to store the previous data Y1. This function
enables recursive calculation, which is important for online
implementation of modeling methods.

After the spatial BFs being updated, the corresponding tem-
poral coefficients can be updated according to (34), following
by reidentification of the low-order temporal model in (35). At
this point, the whole time-space synthesis has been inherited
and updated online for reconstructing the system dynamics and
predicting future outputs in real-time. By incremental learning,
the modeling structure evolves continually as new increments
of spatial measurements are generated through the whole life
cycle of DPSs. Hence, this evolving structure is capable of
tracking and adapting to the system’s dynamics online.

C. Computational Complexity of Incremental Modeling

The first step of the proposed incremental modeling is
QR decomposition of [(I − VnVT

n )Y2]N×M in (13), which
requires approximately O(NM2) flops. The following is SVD

of the smaller matrix

[
�n 0

YT
2 Vn RT

]
(n+M)×(n+m)

that requires

approximately O((n + m)(n + M)2) flops. In many appli-
cations, the number of dominant BFs n is much smaller
than other parameters. That is to say, n � {m, N, M}, and
m ≤ min{N, M}. Neglecting the contribution of initialization
step, the total time complexity of the incremental learning pro-
cedure is at the level of O(NM2), depending on the length
M of the new data increment. Nevertheless, in batch-mode
method, it requires approximately O((L + M)3) flops to pro-
ceed the KLD of the new correlation matrix C̄(L+M)×(L+M).
Hence, the computational complexity of incremental model-
ing will be much lower than the batch-mode method, since
the historical data length L in online mode is continuously
growing, which leads to {N, M} � L in many practical cases.

D. Main Advantages of Incremental Modeling

1) Online Computation and Database Update: It deals with
a continuous sequence of spatial measurements, pro-
cesses the streaming data as it arrives in real-time rather
than waiting for the end of the sequence, without any
requirement to keep the previous measurements as well.

2) Reduced Complexity and Memory Requirements: The
incremental learning process requires approximately
O(NM2) flops and O(NM) memory units in compari-
son to O((L + M)3) flops and O(N(L + M)) memory
units required by the batch-mode method.

3) Adaptiveness: It develops a continually inherited and
updated time-space synthesis according to new incre-
ments of output data, which can track and adapt to the
system’s dynamics in real-time.

IV. SIMULATION EXPERIMENTS

In order to evaluate the proposed incremental spatiotemporal
modeling methodology, the benchmarked distributed process
of a catalytic rod is studied. At each time step tj, the spa-
tial measurements vector yj = y(x, tj) is acquired. Suppose
that during the time period between step tL and tL+M , we col-
lect the new increment of output data Y2 = [yL+1, . . . , yL+M].
The existing time-space synthesis learned from the histori-
cal data Y1 = [y1, . . . , yL] at tL shall be transformed to an
updated version at tL+M through incremental learning of the
new data set Y2. The up-to-date synthesis is used to recon-
struct the system’s output and predict the system’s dynamics
in the future. Then, the updating process is repeated whenever
the next new increment of output data arrives. In this incre-
mental way, the time-space synthesis is inherited and updated
recursively, resulting in implementation of online modeling
and prediction in real-time.

In order to demonstrate the performance of our proposed
incremental modeling methodology, we compare it to the tra-
ditional batch-mode modeling method. In batch-mode, the
spatial BFs and temporal coefficients are computed directly
using all the training data from the initial state to the present
of the process, assuming that the previous data Y1 was accessi-
ble. All the algorithms are implemented in MATLAB R2013a
running on Windows 7 with Intel core i5-4590 3.30 GHz and
4 GB RAM. And all the experimental results presented in this
paper are averaged over 100 runs.

Let y(x, t) and yn(x, t) denote the measured output and the
predicted output. The three performance indexes for evaluating
the modeling accuracy is defined as follows.

1) Spatiotemporal error e(x, t) = y(x, t) − yn(x, t).
2) Spatial normalized absolute error, SNAE(t) =

(1/N)
∑N

i=1 |e(xi, t)|.
3) Root of mean squared error, RMSE =

(
∫ ∑

e(x, t)2dx/
∫

dx
∑

�t)1/2.

A. Case: Catalytic Rod

The benchmark PDE system of a catalytic rod, which con-
sists a long thin rod in a reactor, is shown in Fig. 3. It is a
classical and widely investigated transport-reaction process in
chemical industry [39]. A zeroth-order exothermic chemical
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Fig. 3. Catalytic rod.

reaction is produced inside in the form of A → B, where A
is the pure species fed into the reactor. A cooling medium in
touch with the catalytic rod is used for cooling the exothermic
process.

Assume the species A in the furnace is excess, and the
following parameters of the catalytic rod are constant: den-
sity, heat capacity, conductivity, and temperature at both sides.
The mathematical model of the following parabolic PDE can
be used to describe the spatiotemporal evolution of the rod
temperature [39]:

∂y(x, t)

∂t
= ∂2y(x, t)

∂x2
+ βT

(
e− γ

1+y − e−γ
)

+ βu
(
bT(x)u(t) − y(x, t)

)
(20)

subject to the Dirichlet boundary and initial conditions

y(0, t) = 0, y(π, t) = 0, y(x, 0) = y0(x)

where y(x, t) is the rod temperature, u(t) is the temporal input
function, and b(x) is the spatial distribution of input actuators.
βT is the heat of reaction, βu is the heat transfer coefficient,
and γ denotes the activation energy. The process parameters
are often set as

βT = 50, βu = 2, γ = 4.

There are four input actuators u(t) = [u1(t), . . . , u4(t)]T

with the spatial distribution function b(x) = [b1(x), . . . ,
b4(x)]T , bi(x) = H(x−(i−1)π/4)−H(x−iπ/4), (i = 1, . . . , 4)

and H(·) is the standard Heaviside function. For gathering
informative data and persistently exciting the full spectrum of
the nonlinear system’s dynamics, the input signals are imple-
mented with a series of sinusoidal functions with different
frequencies as ui(t) = 1.1 + 5sin(t/2 + i/10), (i = 1, . . . , 4).
The number of required sensors for modeling depends on
both the intrinsic physical system and the extrinsic model-
ing accuracy needed in practice. In this case, the system’s
output y(xi, t), (i = 1, . . . , N) is collected from 18 identical
sensors that are uniformly distributed in the spatial domain
(N = 18).

The noise-free streaming data is generated from (20) contin-
ually, which is sampled at time interval �t = 0.01. The initial
condition y0(x) is set to be the steady state with the input
ui(t) = 1.1, (i = 1, . . . , 4). The white Gaussian noise with
mean zero and standard deviation σ(xi) = Ad(xi)nd, where
Ad(xi) = (max(y(xi, t)) − min(y(xi, t)))/3, (i = 1, . . . , N) and
nd = 2% is added additively to the noise-free streaming data
to derive the noisy output. The streaming output data is col-
lected for updating the time-space synthesis at time interval

Fig. 4. Measured output for a period of the online process.

�ct = 10. That is, the original spatial BFs and the tempo-
ral model is computed when the first 1000 output data is
collected at time t = 10. Then the new data is added to
the existing time-space synthesis in increments of 1000 at
time t = 20, 30, . . . Subsequently, the time-space synthesis
is inherited and updated through incremental learning every
time the next new 1000 data is collected. In these moments,
the up-to-date time-space synthesis is used for reconstruct-
ing the system’s output from the initial state to the present.
And for verifying the online modeling performance. It is used
to predict the 1000 output data during the future time inter-
val �c(t). In this way, the incremental spatiotemporal model
is trained and tested online in real-time, which is capable of
being adaptive to the system’s dynamics.

As a short example, the measured output y(x, t) for t ∈
(0, 100) is shown in Fig. 4. In the experiment, three dominant
spatial BFs are selected since they can capture more than 99%
of the system’s energy all the time. As shown in Fig. 5, the
three BFs {ϕi(x)}3

i=1 are updated every �ct = 10. It can be
observed that the first spatial basis oscillates between two sets
of values, while the changes of both the second and the third
basis are getting smaller and smaller along with the online
process.

For intuitive comparison, we use RMSE as performance
index regarding to modeling accuracy of the proposed incre-
mental modeling and the traditional batch-mode method. At
each time step when the new 1000 data is added in (t =
20, 30, ...), we compute the RMSE on the training data from
the initial state to the present, and RMSE on the 1000 testing
data during the future time interval �c(t). We also compute
the modeling errors when the BFs are not updated all the way
to illustrate the necessity of updating the BFs in the online
environment. Together, the modeling accuracy comparison is
shown in Table I. From the table, we can clearly see that the
reconstruction error on the training data of the incremental
method has always been very close to the batch-mode method.
By calculation, the difference of the reconstruction error
between these two methods is less than 1%. Meantime the
testing errors for predicting the future outputs of the two meth-
ods are equally comparable to each other. These two indexes
indicate that the incremental modeling method achieves almost
as good performance as the traditional batch-mode method in
terms of modeling accuracy.
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(a)

(b)

(c)

Fig. 5. First three dominant BFs derived by the proposed incremental
modeling. (a) ϕ1(x). (b) ϕ2(x). (c) ϕ3(x).

TABLE I
MODELING ACCURACY COMPARISON BETWEEN THE TRADITIONAL

BATCH UPDATING AND THE PROPOSED INCREMENTAL

UPDATING METHODS

On the other hand, the running time for updating the time-
space synthesis is considered as the performance index for
evaluating the computational efficiency. As shown in Fig. 6,

Fig. 6. Running time (s) comparison between the traditional batch-mode
modeling and the proposed incremental-mode modeling.

Fig. 7. Predicted output of incremental modeling on training data.

the running time of the batch-mode method increases super-
linearly over time, since its time complexity is O((L +
M)3) as the online process resulting in a growing num-
ber of historical output data with length L. Nevertheless,
the running time of the incremental modeling increases
very slowly. This attracting advantage should benefit from
its time complexity being O(NM2), which depends on the
data increment length M instead of the historical data
length L. This index shows that the incremental modeling
is computationally much more effective than the batch-mode
method.

For more intuitive performance demonstration and contrast
of model training, we present the predicted output yn(x, t),
the spatiotemporal error e(x, t) and spatial normalized abso-
lute error SNAE(t) on the training data t ∈ (0, 100), as shown
in Figs. 7–9, respectively, Similarly, for further verifying the
performance of model testing, the measured output y(x, t), the
predicted output yn(x, t), the spatiotemporal error e(x, t), and
spatial normalized absolute error SNAE(t) on a new set of
2000 testing data are also illustrated in Figs. 10–13, respec-
tively. Obviously, it can be found that the proposed incremental
modeling performs equally good as the traditional batch-mode
method, and can provide an extremely close approximation to
the original system.

Combined with the theoretical analysis in Section III, it
can be summarized that the expected modeling accuracy and
computational gains are indeed achieved. From the perspec-
tive of modeling accuracy, the proposed incremental method
on inheriting and updating the time-space synthesis gives an
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(a)

(b)

Fig. 8. Comparison on spatiotemporal error of (a) incremental-mode and
(b) batch-mode methods on training data.

Fig. 9. Comparison on spatial normalized absolute error of incremental-mode
and batch-mode methods on training data.

Fig. 10. Measured output for the testing.

extremely close approximation to the traditional batch-mode
method. At the same time, the proposed incremental modeling
has the advantages of saving much computational effort, being

Fig. 11. Predicted output of incremental modeling on testing data.

(a)

(b)

Fig. 12. Comparison on spatiotemporal error of (a) incremental-mode and
(b) batch-mode methods on testing data.

adaptive to online processes, and no requirement to store the
previous data.

Remark 1: The time interval for updating the time-space
synthesis, denoted as �c(t), is a hyperparameter in the incre-
mental modeling algorithm. In the experiment, we evaluate the
model training and testing performances of the incremental
modeling algorithm at time t = 100 with respect to differ-
ent settings of updating time interval. As shown in Fig. 14,
it can be observed that the incremental modeling algorithm
achieves almost the same good performances regarding to dif-
ferent updating time intervals. In practice, the updating time
interval can be adjusted according to the process requirements.
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Fig. 13. Comparison on spatial normalized absolute error of incremental-
mode and batch-mode methods on testing data.

Fig. 14. Modeling error of the proposed incremental algorithm with respect
to the updating time interval.

V. CONCLUSION

An incremental spatiotemporal learning scheme is proposed
for online modeling of DPSs in this paper. It is based on
recursive updating of the spatial BFs and the correspond-
ing temporal model through incremental learning of new sets
from streaming data. In this way, the time-space synthesis
is inherited and updated through the whole life cycle of
the online process. The proposed incremental method can
achieve almost the same modeling accuracy as the tradi-
tional batch-mode method. Meantime, it is computationally
much more effective, since it does not require to retrain the
whole model structure from scratch when new output data
arrives. Besides, it does not require to store the entire set
of the process data. The adaptive nature of this methodol-
ogy makes it promising for online modeling of DPSs for the
whole life cycle. The proposed concept of incremental learning
will have broad applications in many fields, including model-
ing, optimal sensor placement, and predictive control of DPSs.
Experimental results demonstrate the viability, efficiency, and
potential of this incremental-mode approach for online model-
ing of distributed processes. Future implementation in various
engineering problems is under consideration.

APPENDIX

SPATIOTEMPORAL MODELING

A. Time-Space Separation

For time-space separation of the PDE system (1),
KLD [28]–[29], as a data-based model reduction method for
representing a stochastic field with the lowest dimension, is

widely utilized for calculating the empirical eigenfunctions
and deriving accurate reduced-order approximations of many
PDE systems [5]–[11]. For simplicity, assume the system
output {y(xi, t)}N,L

i=1,t=1, denoted as “snapshots,” is uniformly
sampled in both the time and space coordinates, where L is
the time length. Define the inner product, norm and ensem-
ble average as (f1(x), f2(x)) = ∫

�
f1(x)f2(x)dx, ||f1(x)|| =

(f1(x), f1(x))1/2 and 〈f1(x, t)〉 = (1/L)
∑L

t=1 f1(x, t).
Motivated by Fourier series, the spatiotemporal variable

y(x, t) can be expanded onto an infinite number of orthonormal
spatial BFs {ϕi(x)}∞i=1 with temporal coefficients {ai(t)}∞i=1

y(x, t) =
∞∑

i=1

ϕi(x)ai(t). (21)

Because the spatial BFs are orthonormal, i.e.,

(
ϕi(x), ϕj(x)

) =
∫

�

ϕi(x)ϕj(x)dx =
{

0, i �= j
1, i = j

(22)

the temporal coefficients can be obtained from

ai(t) = (ϕi(x), y(x, t)), i = 1, . . . ,∞. (23)

For practical use, it can be truncated into a finite-dimensional
version

yn(x, t) =
n∑

i=1

ϕi(x)ai(t) (24)

where yn(x, t) denotes the nth-order approximation.
Time-space separation aims to compute the most domi-

nant spatial BFs {ϕi(x)}n
i=1 among the spatiotemporal output

{y(xi, t)}N,L
i=1,t=1 using KLD. Finding the typical {ϕi(x)}n

i=1 can
be performed by minimizing the following objective function:

min
ϕi(x)

〈‖y(x, t) − yn(x, t)‖2〉 (25)

subject to (ϕi, ϕi) = 1, ϕi ∈ L2(�), i = 1, . . . , n. The
orthonormal constraint (ϕi, ϕi) = 1 is imposed to restrict that
the function ϕi(x) is unique. The Lagrangian function with
regard to this constrained optimization problem is

J = 〈‖y(x, t) − yn(x, t)‖2〉 +
n∑

i=1

λi((ϕi, ϕi) − 1) (26)

the necessary condition of this problem can be computed as∫
�

R(x, ξ)ϕi(ξ)dζ = λiϕi(x), (ϕi, ϕi) = 1, i = 1, . . . , n

(27)

where R(x, ξ) = 〈y(x, t)y(ξ, t)〉 is denoted as the spatial two-
point correlation function.

The solution of (27) can be obtained by a computationally
efficient method of snapshots [28]. The eigenfunction (spatial
BFs) ϕi(x) can be transformed into a linear combination of
the snapshots as

ϕi(x) =
L∑

t=1

γity(x, t). (28)
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After substituting (28) into (27), the necessary condition is
computed as

∫
�

1

L

L∑
t=1

y(x, t)y(ζ, t)
L∑

k=1

γiky(ζ, k)dζ = λi

L∑
t=1

γity(x, t).

(29)

Then this eigenvalue problem is transformed to a simplified
form of an L × L matrix eigen-decomposition problem as

Cγi = λiγi (30)

where γi = [γi1, . . . , γiL]T is the ith eigenvector, and

Ctk = 1

L

∫
�

y(ζ, t)y(ζ, k)dζ (31)

is defined as the temporal two-point correlation function. The
solution of problem (30) yields the eigenvectors γ1, . . . , γL,
which in turn can be used for constructing the eigenfunctions
ϕ1(x), . . . , ϕL(x) in (28). Since the matrix C is symmetric
and positive semidefinite, the computed eigenfunctions are
orthogonal.

Denote the maximum number of nonzero eigenvalues as
K ≤ min(N, L). Let the eigenvalues λ1 > λ2 > . . . > λK

and the corresponding eigenfunctions ϕ1(x), ϕ2(x), . . . , ϕK(x)
in the descending order of the magnitude of the eigenval-
ues. The eigenfunction corresponding to the first eigenvalue
is supposed to be the most “energetic.” The total “energy”
of the PDE system is considered as the sum of the eigenval-
ues. The energy percentage to each eigenfunction based on the
associated eigenvalue is assigned as

Ei = λi/

K∑
j=1

λj, i = 1, . . . , K. (32)

Usually, the sufficient set of eigenfunctions that capture more
than 99% of the system’s energy can be used to determine
the reduced-order degree of n in (24). By experience, only a
small set of dominant spatial BFs expansion can approximate
most of the dynamics of many spatiotemporal systems. For
any arbitrary set of spatial BFs {φi(x)}n

i=1, the following result
holds [30]:

n∑
i=1

〈(y(·, t), ϕi)
2〉 =

n∑
i=1

λi ≥
n∑

i=1

〈(y(·, t), φi)
2〉. (33)

It shows that KLD is optimal on average in the class of rep-
resentations by linear combination. That is why KLD can
provide the lowest dimension n.

B. Temporal Model Identification

After learning the optimal spatial BFs {ϕi(x)}n
i=1 by time-

space separation, the low-order temporal model ai(t) is identi-
fied from the decomposed low-dimensional data. The temporal
coefficients ai(t) corresponding to the spatiotemporal output
y(x, t) are computed from (21) as

ai(t) = (ϕi(x), y(x, t)), i = 1, . . . , n. (34)

The time series data a(t) is usually approximated by a
deterministic NARX model [31]

a(t) = F(a(t − 1), . . . , a(t − da), u(t − 1), . . . , u(t − du))

+ e(t) (35)

where du and da denote the maximum input and output lags,
respectively, and e(t) denotes the residual error. The unknown
function F can be estimated from the low-dimensional input–
output data set {u(t), a(t)}L

t=1 using various function approx-
imators, such as radial BFs (RBFs), polynomial functions,
wavelets and kernel functions [32]. After identification, the
model (35) can provide a prediction â(t) at any time t if the
initial conditions are given. Combined with (24), this reduced-
order model can reconstruct and predict the spatiotemporal
dynamics over the entire time-space domain.

In this paper, the temporal model is assumed to be a
simplified form as

a(t) = Ba(t − 1) + F̄(a(t − 1)) + Du(t − 1)

+ e(t) (36)

where the matrices B ∈ R
n×n and D ∈ R

n×m donate the linear
part and the transform function F̄ : R

n → R
n donates the

nonlinear part. NNs are capable of approximating any contin-
uous function to an arbitrary accuracy and have been widely
investigated for various industrial processes [7], [8], [33]–[36].
In the temporal identification stage, F̄ is estimated as an RBF
network, then the model (36) is rewritten as

a(t) = Ba(t − 1) + WK(a(t − 1)) + Du(t − 1) + e(t) (37)

where W = [W1, . . . , Wl] ∈ R
n×l denotes the weight, K(·) =

[K1(·), . . . , Kl(·)]T : R
n → R

l denotes RBF, and l is the num-
ber of neurons. The RBF is usually selected as the Gaussian
kernel Ki(a) = exp−(a − ci)

T�−1
i (a − ci)/2, (i = 1, . . . , l)

with proper center vector ci ∈ R
n and norm matrix �i ∈ R

n×n.
With the KLD as a preprocessor, the size of the temporal
model can be greatly reduced. The unknown parameters A, B,
and W of the hybrid RBF network can be estimated by the
recursive least square method [7]. Finally, this time-space syn-
thesis can be used to reconstruct the spatiotemporal dynamics
and predict the future outputs of the system.
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