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Abstract— Multi-Agent settings remain a fundamental chal-
lenge in the reinforcement learning (RL) domain due to the par-
tial observability and the lack of accurate real-time interactions
across agents. In this article, we propose a new method based
on local communication learning to tackle the multi-agent RL
(MARL) challenge within a large number of agents coexisting.
First, we design a new communication protocol that exploits
the ability of depthwise convolution to efficiently extract local
relations and learn local communication between neighboring
agents. To facilitate multi-agent coordination, we explicitly learn
the effect of joint actions by taking the policies of neighboring
agents as inputs. Second, we introduce the mean-field approxi-
mation into our method to reduce the scale of agent interactions.
To more effectively coordinate behaviors of neighboring agents,
we enhance the mean-field approximation by a supervised policy
rectification network (PRN) for rectifying real-time agent inter-
actions and by a learnable compensation term for correcting
the approximation bias. The proposed method enables efficient
coordination as well as outperforms several baseline approaches
on the adaptive traffic signal control (ATSC) task and the
StarCraft II multi-agent challenge (SMAC).

Index Terms— Agent communication, depthwise convolution,
mean-field approximation, multi-agent reinforcement learning
(MARL), StarCraft II multi-agent challenge (SMAC).

I. INTRODUCTION

BASED on the Markov decision process (MDP) formula-
tion, reinforcement learning (RL) [1], [2] allows agents

to solve tasks from direct interactions with the environment,
forming an optimal policy to make sequential decisions in a
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trial-and-error manner [3], [4], [5], [6]. The recent combination
of RL with deep learning, referred to as deep RL (DRL) [7],
has emerged as a promising direction for the autonomous
acquisition of complex behaviors [8], [9], since it can acquire
elaborate skills using general-purpose neural network repre-
sentations from high-dimensional sensory inputs [10], [11],
[12], [13]. Many artificial intelligence (AI) applications require
the collaboration of multiple agents [14], [15], [16], and
successfully scaling RL to multi-agent settings is crucial to
building intelligent systems that can productively interact with
each other and humans.

Multi-agent RL (MARL) is concerned with coordinating a
set of agents toward maximizing each agent’s or the group’s
objective, where each individual can only observe a local
part of the shared environment [17]. A fundamental challenge
in MARL is to tackle the nonstationarity due to the partial
observability and the lack of accurate real-time interactions
across agents [18], [19]. Fully centralized control that unifies
all agents into a single one is usually infeasible due to the
exponential growth of the size of joint action spaces. The
simplest option to overcome the curse of dimensionality is
to learn an individual action-value function independently for
each agent, as in independent Q-learning (IQL) [20], while
the learning is often unstable as changes in one agent’s policy
will affect those of the others. This issue can be mitigated by
the centralized training and decentralized execution (CTDE)
paradigm [21], [22] that typically leverages centralized critics
to approximate the global value function of the joint policy
and trains actors restricted to the local observation of a
single agent [23], [24], [25], [26], [27], [28]. However, the
execution phase can still suffer from non-stationarity due to
not accounting for extra information from other agents.

Due to the partial observability and limited channel capacity,
a communication protocol is vital to coordinate the behavior
of agents and solve the task via information sharing [29],
[30], [31]. A straightforward approach is to learn global com-
munication that shares information across all agents, such as
differentiable inter-agent learning (DIAL) [32], BiCNet [33],
and informative multi-agent communication (IMAC) [34]. The
computational cost can be high for all agents communicating
with each other, especially with a large number of agents
coexisting. Instead, the other kind of approaches attempts
to learn informative local communication that needs to effi-
ciently exploit the available communication resources, such
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as attentional communication (ATOC) [35], IC3Net [36], and
I2C [18]. While these methods exploit extra information from
neighboring agents, they do not explicitly learn the effect
of joint actions. It could potentially reduce the coordination
efficiency since the environment dynamics of an agent depends
on actions of the others.

In this article, we propose a new MARL method within
a large number of agents coexisting based on local commu-
nication learning. First, inspired by the fact that convolution
is widely used in extracting local relations [37], we design
a new communication protocol that exploits the ability of
depthwise convolution [38] to efficiently learn local commu-
nication between neighboring agents. Since the environment
dynamics of an agent depends on actions of the others, we take
the policies of neighboring agents as inputs and explicitly
learn the effect of joint actions to facilitate multi-agent coor-
dination. Second, in our method, the mean-field approxima-
tion [39] is introduced to approximate the interactions within
the population of agents considering the average effect from
the neighboring agents of an individual, thus considerably
reducing the scale of agent interactions. To more accurately
coordinate behaviors of neighboring agents, we enhance the
mean-field approximation by a supervised policy rectification
network (PRN) that predicts real-time policies from previous
information to rectify real-time agent interactions.1 Besides,
since mean-field approximation drops out the second-order
remainders, we attempt through learning to compensate for the
approximation bias via our communication protocol and obtain
a more accurate mean-field estimate of agent interactions.

We extensively evaluate our method on two multi-agent
tasks: the adaptive traffic signal control (ATSC) on the sim-
ulation of urban mobility (SUMO) platform [19], [40] and
the StarCraft II multi-agent challenge (SMAC) [41]. Exper-
imental results show that our method can achieve more effi-
cient multi-agent coordination and outperform several baseline
approaches.

In summary, our contributions are threefold.

1) We propose a new protocol that exploits the ability of
depthwise convolution to efficiently learn local com-
munication, and we explicitly learn the effect of joint
actions to facilitate multi-agent coordination.

2) We exploit the mean-field approximation to reduce the
scale of agent interactions, and enhance the mean-field
estimate by a supervised PRN and a learnable compen-
sation term.

3) We perform extensive experiments to verify that our
method can consistently improve the multi-agent learn-
ing performance over several baselines.

The remainder of this article is organized as follows.
Section II gives the related work on MARL. Section III intro-
duces preliminaries of MARL and mean-field approximation.
Section IV first presents the proposed DCCP and enhanced
mean-field approximation, followed by the final integrated

1The communication of real-time information during execution may lead to
a certain time lag due to bandwidth limitations in real-world applications [30].
Hence, throughout the article, we assume that an individual cannot know the
real-time information of its neighbors during execution.

algorithm. Experiments on the ATSC and SMAC tasks are con-
ducted in Section V. Section VI presents concluding remarks.

II. RELATED WORK

Communication learning is recognized as a promising way
to handle multi-agent systems by sharing extra information
(e.g., observations and policies) with each other for coordina-
tion [42], [43], [44], [45]. A straightforward approach is global
information sharing among all agents. Foerster et al. [32]
proposed to learn one-round point-to-point communication,
which uses the broadcast messages from the previous time step
instead of real-time ones due to communication constraints in
the real world. Peng et al. [33] used the bidirectional recurrent
neural network (RNN) to maintain the communication pro-
tocol that can learn various types of coordination strategies.
IMAC [34] learned an efficient protocol that compresses com-
munication messages and schedules more accurate information
delivery to overcome the bandwidth limitations. Some recent
works, such as targeted multi-agent communication (TarMAC)
[30], structured attentive reasoning network (SARNet) [46],
and deep implicit coordination graph (DICG) [47], employed
an attention mechanism with global communication to learn
what messages to send and whom to address these messages
to Wang et al. [48] designed an expressive and succinct com-
munication protocol by introducing information-theoretic reg-
ularizers for maximizing mutual information between agents’
action selection and communication messages. Jin et al. [49]
utilized the event-triggered mechanism to reduce a large
amount of consumption of continuous communication at the
cost of a small amount of computing resources. The compu-
tational cost can be high for all agents transmitting a large
amount of information to each other, especially with many
agents coexisting.

Instead, the other kind of approaches attempts to learn local
communication that needs efficiently exploiting the available
communication resources. Sukhbaatar et al. [29] extended
CommNet to a local variant that allows agents to communicate
to others within a certain range only. Jiang and Lu [35]
proposed an attentional model that dynamically determines
whether the agent should communicate with other agents to
cooperate in its observable field. Singh et al. [36] learned when
to communicate by a gating mechanism with individualized
rewards to gain better performance and scalability. Ding
et al. [18] turned to realize peer-to-peer communication using
causal inference to learn a prior network that maps the agent’s
local observation to a belief about whom to communicate with.
While these local communication learning methods account
for the extra information from other agents, they do not explic-
itly learn the effect of joint actions, which could potentially
reduce coordination efficiency since the environment dynamics
of an agent depends on the others.

Another thread of work is to consider the extra information
by explicitly learning policies of other agents. Tesauro [50]
proposed hyper Q-learning that estimates policies of other
agents using Bayesian inference, which is only feasible for dis-
crete or low-dimensional tasks due to the high-computational
burden of computing exact Bayesian posteriors. Foerster
et al. [51] extended hyper Q-learning to high-dimensional and
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continuous state spaces by communicating only two scalars
(i.e., the current learning step and the learning rate) among
agents, while these two scalars have limited representation
power for conjecturing the underlying policies. Yang et al. [39]
introduced the mean-field theory [52] into MARL to reduce the
scale of agent interactions, using interactions only between an
individual and the average effect from its neighboring agents to
approximate those interactions within a population of agents.

Here, we exploit the ability of depthwise convolution to
efficiently extract local relations and learn local communica-
tion between neighboring agents. In contrast to existing local
communication learning approaches, we take the policies of
neighboring agents as inputs and explicitly learn the effect
of joint actions to facilitate coordination efficiency. Further,
we enhance the mean-field approximation with a supervised
PRN and a learnable compensation term to obtain a more
accurate mean-field estimate of agent interactions.

III. PRELIMINARIES

A. Reinforcement Learning

RL is studied to deal with the sequential decision-making
problems through the MDP framework. An MDP is concerned
with the tuple (S,A,T ,R, γ ), where S is the set of states,
A is the set of actions, T : S × A × S → [0, 1] is the
conditional transition probabilities, R : S×A×S → R is the
reward function, and γ ∈ [0, 1) is the discount factor. We use
π(a|s) : S × A → [0, 1] to denote a stochastic policy that
is the probability distribution of executing action a at state s.
The goal of RL is to find the optimal policy π∗ to maximize
its expected return J (π) as

J (π) = Es0,a0,...,

� ∞�
t=0

γ tr(st , at )

�
(1)

where at ∼ π(·|st).
The action value function is defined as the return of policy

π starting from executing action a in state s as

Qπ (s, a) = E

� ∞�
t=0

γ t R(st , at , st+1)|s0 = s, a0 = a, π

�
. (2)

Then, the optimal policy can be directly derived as

π∗(s) = arg maxa∈AQ∗(s, a) (3)

where Q∗(s, a) = maxπ Qπ (s, a). Deep Q-learning [7] repre-
sents the Q-function Q(s, a; θ) with a neural network parame-
terized by θ . During training, the transition tuples (s, a, r, s�)
are stored in a replay buffer. The parameters θ are updated by
iteratively sampling a batch of transitions from the buffer and
minimizing the squared temporal-difference error as

L(θ) =
�

i

��
y target

i − Q(s, a; θ)
�2

�
(4)

where the target Q-values can be formulated as

y target
i =

⎧⎨
⎩

ri , if terminated,

ri + γ max
a�i

Q
�
s�i , a�i ; θ−


, otherwise (5)

and θ− are parameters of a target network that is periodically
frozen and synchronized from θ for several iterations.

B. Multi-Agent RL (MARL)

MARL involves multiple interacting agents coexisting in a
sharing environment, where each individual can only observe a
local part of the shared environment. In a multi-agent system,
the reward received by an agent depends not only on its own
action, but also on the actions taken by the others. Through
communicating with each other, agents obtain the observations
and policies of others to coordinate their behaviors, and learn
to maximize an individual or group objective. Following the
state-of-the-art works [14], [26], [27], we formulate the MARL
system by a partially observable Markov game [53], which is a
multi-agent extension of Markov decision processes (MDPs).
A partially observable Markov game for N agents is given by
a tuple (N,S,A1, . . . ,AN , T, R1, . . . , RN , O1, . . . , ON , γ ),
where S is the state space of the environment, A =
A1×, . . . ,×An is the action space, T is the transition function,
Ri : S × Ai × S �→ R is the reward function of agent i ,
Oi : S × � �→ [0, 1] is a private observation correlated with
the state oi : S �→ Oi , and γ ∈ [0, 1) is the discount factor.
The objective for each agent i is to maximize its own return
Ri =�T

t=0 γ t r t
i .

At each time step, each agent selects its own action ai ∈ Ai

conditioned on its own observation oi . After executing the joint
action a = {a1, . . . , aN }, each agent receives its own reward
Ri (s, a). Each agent has its own value function Qi (s, a) with
respect to the global state s and joint action a as

Qi (st , at) = Est+1:∞,at+1:∞

� ∞�
τ

γ τ r i
τ |st , at

�
. (6)

This general formalization is a noncooperative setting, i.e.,
no explicit coalitions are considered. When the multi-agent
task is fully cooperative, the reward function is shared among
agents as Ri = R j (∀i, j ∈ {1, . . . , N}). Therefore, the
value function in cooperative settings can be formalized by
a total term Qtot(s, a) as in value function factorization
approaches [25].

C. Mean-Field Approximation

Under the hypothesis that the global state is available, mean-
field approximation proposes to use the interactions between
a given agent and a virtual agent whose action is the mean
value of the given agent’s neighbors, to approximate the value
function with respect to joint actions. In MARL, the standard
Q-function Qi(s, a) is infeasible to learn since the dimension
of joint action a exponentially grows with the number of
agents. To reduce the complexity of the interactions among
agents, mean-field approximation factorizes the Q-function
with pairwise local interactions

Qi (s, a) = 1

|Ni |
�
j∈Ni

Q j
�
s, a j , a j


(7)

where Ni is the set of the neighbors of agent i with size |Ni |.
The mean action āi is based on the neighborhood Ni , and

the action of neighbor j could be expressed by a sum of the
mean-action and a small fluctuation δai, j as

a j = āi + δai, j , where āi = 1

|Ni |
�

j

a j . (8)
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Following (7) and (8), the Q-function can be expanded and
expressed by Taylor’s theorem as

Qi (s, a) = 1

|Ni |
�

j

Qi
�
s, ai , a j



= 1

|Ni |
�

j

�
Qi

�
s, ai , āi

+∇āi, j Qi
�
s, ai , āi

 · δai, j

+ 1

2
δai, j · ∇2

āi, j Qi
�
s, ai , ãi, j

 · δai, j

�

= Qi
�
s, ai , āi

+ 1

2|Ni |
�

j

Ri
s,ai

�
a j


≈ Qi

�
s, ai , āi


(9)

where the second-order Taylor polynomial remainder Ri
s,ai (a j)

denotes δai, j ·∇2
āi, j Qi (s, ai , ãi, j )·δai, j with ãi, j = āi+�i, jδai, j

and �i, j ∈ [0, 1]. Suppose the Q-function Qi (s, ai , a j) is
�-smooth, the remainder could be proved that it is bounded
within the interval [−2 �, 2 �], and is dropped as a fluctuation
term.

IV. OUR METHOD

In this section, we first propose a new protocol that effi-
ciently learns local communication via depthwise convolution.
Then, we present the enhanced mean-field approximation
that uses PRN to rectify real-time agent interactions. Finally,
we give the integrated algorithm.

A. Depthwise Convolution-Based Communication
Protocol (DCCP)

Due to the partial observability and the lack of accurate
real-time interactions across agents, a communication protocol
is vital to coordinate the behavior of each individual and
to solve the task via sharing the observations and policies.
It is straightforward to broadcast essential messages across all
agents, while the learning becomes intractable due to the expo-
nential growth of agent interactions when the number of agents
increases largely. Moreover, this approach suffers from content
redundancy and is unsustainable under bandwidth limitations.
Instead, we consider learning a local communication protocol
between neighboring agents. Convolution is widely used in
extracting local relations, and inspired by this, we introduce
the spatial convolution into the local communication protocol.
In principle, the convolution can perform a form of system
identification, conjecturing parameters of neighboring agents
and coordinating the individual’s behavior as a function of
these parameters.

In MARL, the information to be shared usually has dis-
tinguishable channel-wise semantics. For example, different
channels of an observation vector may represent different attri-
butions of the environment, or different channels in the output
of a Q-network can express outcomes of different actions.
Standard convolution cannot preserve the channel-wise seman-
tics since it filters and combines inputs from different channels
into a new set of outputs in one step. Therefore, we propose
to use one-layer depthwise convolution [38] to filter inputs

from the same channel and produce channel-wise outputs
that are semantics-invariant with inputs. In each channel,
we share the parameters of multiple convolution kernels for
all agents, aiming to extract and transfer the channel-wise
common knowledge (embedded in the convolution kernels)
across agents. Then, each individual has its own agent-specific
weights to calculate the weighted sum of outputs from these
depthwise convolution kernels.

Fig. 1 illustrates the proposed communication protocol via
depthwise convolution. In this article, we assume that the
neighboring relationship between agents keeps fixed during
learning. Let xi = [x i

1, x i
2, . . . , x i

M ]T denote the M-channel
input vector of agent i (i = 1, . . . , N), and let Ni denote
the set of the i th agent’s neighbors. For a given channel m,
we use K convolution kernels of size n × n to extract the
local relations between agent i and its neighbors { j} j∈Ni ,
which outputs a K -dimensional hidden vector ui

m as ui
m =

Conv(x i
m, {x j

m} j∈Ni ). We use a different set of K convolution
kernels for each channel, resulting in M ·K convolution kernels
in total. Then, agent i uses its own agent-specific weight vector
wi

m to calculate the weighted sum of outputs from the K
convolution kernels as zi

m = ui
m

T ·wi
m . We gather the outputs

of all M channels to obtain the output vector of the DCCP as
zi = DCCP(xi , {x j} j∈Ni ).

Through the depthwise convolution channel by channel, the
channel-wise semantics is well preserved and the output zi

of the communication protocol is semantics-invariant with the
input xi . The convolution kernels are shared among all agents
to modulate the common knowledge for behavior coordination,
while each individual maintains its agent-specific weights to
combine the convolution kernels for promoting diversity of
individual behaviors.

B. Enhanced Mean-Field Approximation

In MARL, the learning of an agent’s optimal policy depends
on the dynamics of the others that are a part of the environ-
ment. In the article, we use the mean-field approximation [39]
to model the behaviors of other agents for each individual.
It approximately treats the interactions within agents as the
interaction between an individual and a virtual agent averaged
by other agents, which transmits messages across agents with
a reduced scale of agent interactions.

In mean-field Q-learning (MF-Q), the i th agent’s Q-function
of the global joint action is first factorized using only pairwise
interactions between neighboring agents as

Qi (s, a) = 1

|Ni |
�
j∈Ni

Qi
�
s, ai , a j


(10)

where s is the global state, a is the joint action of agents, and
| · | denotes the cardinality of the set. By the Taylor’s theorem,
the Q-function can be expanded and approximated as

Qi (s, a) ≈ Qi

⎛
⎝s, ai ,

1

|Ni |
�
j∈Ni

a j

⎞
⎠. (11)

Since an individual cannot know real-time policies of its neigh-
boring agents, MF-Q uses previous actions of the neighbors
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Fig. 1. Illustration of DCCP. We use a different set of K convolution kernels for each channel, and each kernel is shared for all agents. In channel m, the
input of the ith agent, xi

m , is transformed to a K -dimensional vector ui
m by convolution over the local area surrounding this agent. Then, the agent-specific

weight vector wi
m is used to calculate the weighted sum of ui

m to obtain the final output zi
m .

to estimate the current action ãi
t as

ãi
t = μi

t

⎛
⎝st ,

1

|Ni |
�
j∈Ni

a j
t−1

⎞
⎠ (12)

where μi is the policy function derived from Qi . In place of
the real action a j

t , the estimated one ã j
t is used to make the

real-time decision ai
t as

ai
t = μi

t

⎛
⎝st ,

1

|Ni |
�
j∈Ni

ã j
t

⎞
⎠. (13)

However, the estimated action ãt has no guaranteed similarity
with the real one at for two reasons: 1) the same policy
function μ is used in both action estimation and real decision
making and 2) the estimated action ãt is predicted from
previous real action at−1 that may have no explicit correlation
with the current real action at . Moreover, MF-Q assumes that
each agent has access to the global state of the system, which
might be problematic in multi-agent settings where each agent
can only observe a local part of the shared environment.

To more accurately coordinate behaviors of neighboring
agents, we enhance the mean-field approximation by a super-
vised PRN that predicts real-time actions from previous infor-
mation to rectify real-time agent interactions. Since the policy
is derived from the Q-values, we estimate the agent’s real-
time Q-values q̂i

t from previous partial observations ot−1 and
Q-values qt−1 of itself and its neighboring agents as

q̂i
t = f PRN

φ

��
oi

t−1, q i
t−1


,
��

o j
t−1, q j

t−1

��
j∈Ni

�
(14)

where f PRN
φ is the PRN function parameterized by weights φ.

It is trained in a supervised regression manner to make the
estimated Q-values q̂i

t more accurate about the ground truth
qi

t , and the loss function is formalized as

LPRN
φ =

�
i∈N

��q i
t − q̂i

t

��2
. (15)

Fig. 2 illustrates the network structure of PRN in detail.
First, we use an encoder that is shared across agents to embed

Fig. 2. Illustration of the PRN.

the input (oi
t−1, q i

t−1) into a latent vector vi with the same
dimension as the action space as vi = ENCPRN(oi

t−1, qi
t−1).

Then, we feed the latent vectors of agent i and its neighbors
into our DCCP for information sharing and behavior coor-
dination, and obtain the predicted real-time Q-values q̂i

t as
q̂i

t = DCCPPRN(vi , {v j} j∈Ni ). In short, the PRN function can
be described as

q̂ i
t=DCCPPRN

�
ENCPRN

��
oi

t−1, qi
t−1


,
��

o j
t−1, q j

t−1

��
j∈Ni

��
.

(16)

C. Integrated Algorithm
With the above, Fig. 3 depicts the architecture of our

method that consists of three parts: the observation prediction
network (OPN) with DCCP, the PRN with enhanced mean-
field approximation, and the value function network (VFN).

The first module, OPN, employs DCCP to share observa-
tions across neighboring agents, which addresses the partial
observability issue with low-computational cost. In real-world
applications, the communication of real-time information may
lead to a certain time lag due to bandwidth limitations [30].
Analogous to PRN, we predict real-time observations from
previous information to more accurately coordinate behaviors
of neighboring agents. In detail, we use the previous observa-
tions ot−1 and the previous Q-values q t−1 of an agent and its
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Fig. 3. Network architecture of our method.

neighbors to predict the agent’s real-time observation ôi
t as

ôi
t = f OPN

ϕ

��
oi

t−1, q i
t−1


,
��

o j
t−1, q j

t−1

��
j∈Ni

�
(17)

where f OPN
ϕ denotes the OPN function parameterized by

weights ϕ. This prediction problem is analogous to learning
the state transition model since the Q-values can be considered
as the action information equivalently, and is trained in a
supervised regression manner using the current observation
oi

t as the ground truth as

LOPN
ϕ =

�
i∈N

��oi
t − ôi

t

��2
. (18)

We use another encoder that is also shared across agents to
embed the agent’s input (oi

t−1, q i
t−1) into a latent vector with

the same dimension as the observation space. Then, we feed
the latent vectors of an agent and its neighbors into our DCCP
to obtain the predicted real-time observation as

ôi
t=DCCPOPN

�
ENCOPN

��
oi

t−1, q i
t−1


,
��

o j
t−1, q j

t−1

��
j∈Ni

��
.

(19)

The PRN has been described in the last section, and finally,
we present the VFN. It evaluates the Q-values q i

t from the
predicted real-time observations ôt and the rectified real-time
agent interactions q̂ t of an agent and its neighbors, and the
agent’s real-time observation oi

t as

qi
t = f VFN

θ

�
oi

t ,
�
ôi

t , q̂ i
t


,
��

ô j
t , q̂ j

t

��
j∈Ni

�
(20)

where f VFN
θ denotes the VFN function parameterized by

weights θ , and θ are shared across agents except for the
agent-specific weights in the two DCCPs.

More concretely, VFN contains three parts: the observation
sharing for global state estimation (SE), the policy sharing
for compensating the mean-field approximation bias, and the
deep Q-network (DQN). First, we feed the predicted real-time

observations ôt of an agent and its neighbors for information
sharing and coordination, and obtain the global SE s̃i

t as

s̃i
t = DCCPSE

�
ôi

t ,
�

ô j
t

�
j∈Ni

�
. (21)

Second, to simplify agent interactions, MF-Q expands the
Q-function in (11) using Taylor’s theorem and drops out
the second-order remainders. We attempt to exploit DCCP
to compensate for this approximation bias by sharing the
predicted real-time Q-values q̂t across neighboring agents, and
obtain a more accurate mean-field estimate (ME) q̃ i

t as

q̃i
t =

1

|Ni |
�
j∈Ni

q̂ j
t + DCCPME

�
q̂i

t ,
�

q̂i
t

�
j∈Ni

�
(22)

which consists of the rectified mean-value of neighboring
agents plus a DCCP-based compensation term. Since this
DCCP is trained using the DQN loss directly, it has the poten-
tial to implicitly compensate for the second-order remainders
in an end-to-end manner.

Third, the DQN takes the concatenation of the real-time
observation oi

t , the estimated global state s̃i
t , and the enhanced

mean-field estimate q̃i
t as input as

si
t =

�
oi

t , s̃i
t , q̃i

t

�
. (23)

The output of the DQN is denoted as qi
t = Q(·|si

t ), and the
loss function is formalized as the Bellman residual as

LVFN
θ =

�
i∈N

�
yi

t − Q
�
ai

t |si
t

2
(24)

in which the bootstrapped target yi
t is calculated as

yi
t =

�
r i

t , if terminate

r i
t + γ max

a�
Qtarget

�
a�|si

t+1


, otherwise

(25)

where Qtarget is the target network with parameters copied from
some previous version of the DQN.

Together, the loss function of our method is aggregated as

L(θ,φ,ϕ) = LVFN
θ + λ1LPRN

φ + λ2LOPN
ϕ (26)

where λ1 and λ2 are coefficients that balance the influence of
three modules’ loss functions.2 Correspondingly, the integrated
algorithm is summarized as shown in Algorithm 1. The
network parameters θ , φ, and ϕ are shared across agents
except for the agent-specific weights wi . Specifically, the
agent-specific weights wi are updated as

wi←wi−α∇wi

��
yi
τ − Q

�
si
τ , ai

τ

2

+ λ1

��qi
τ− q̂i

τ

��2+λ2

��oi
τ− ôi

τ

��2
�
∀i ∈ N.

(27)

2The supervised prediction of OPN and PRN involves online learning,
which can be stabilized by the experience replay mechanism, analogous to
the training of deep Q-network [7]. Moreover, we may increase the update
frequency of OPN and PRN to stabilize the supervised prediction modules
before focusing on training the RL module VFN.
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Algorithm 1 DCCP-Based MARL With Enhanced Mean-Field
Approximation
1: Initialize exploration ratio �, learning rate α, and

coefficients λ1, λ2

2: Define a transition ei
t (i = 1, . . . , N) in replay buffer B as

ei
t =

�
oi

t−1, qi
t−1, oi

t , ai
t , r i

t , q i
t , oi

t+1

�
3: Randomly initialize the parameters φ, ϕ, θ

4: while not converge do
5: Initialize qi

0 and oi
0 for each agent i

6: for t = 1, . . . , T (terminal) do
7: for each agent i = 1, . . . , N do
8: With probability � select a random action ai

t , other-
wise ai

t = arg maxa q i
t

9: end for
10: Take joint action [a1

t , . . . , aN
t ], obtain r i

t and oi
t+1

11: Store transitions ei
t into B

12: end for
13: Sample a minibatch of transitions ei

τ from B
14: Calculate ôi

τ , q̂i
τ , and yi

τ using (19), (16), and (25)
15: Perform a gradient descent step as

θ ← θ − α
�

i∈N ∇θ

�
yi
τ − Q

�
si
τ , ai

τ

2

φ ← φ − αλ1
�

i∈N ∇φ ||qi
τ − q̂i

τ ||2
ϕ← ϕ − αλ2

�
i∈N ∇ϕ ||oi

τ − ôi
τ ||2

16: Update Qtarget ← Q every η steps
17: end while

V. EXPERIMENTS

We conduct experiments applying the proposed method to a
mixed-cooperative ATSC task on the SUMO platform and to a
fully cooperative SMAC task, to imply the method’s ability in
general cooperative circumstances to achieve efficient coordi-
nation to achieve high returns. We compare our method to the
following baselines: the CTDE-based QMIX [25], [26] and the
global communication learning-based nearly decomposable
Q-functions (NDQ) [48] for the fully-cooperative SMAC; the
global communication learning-based TarMAC [30] and the
local communication learning-based IC3Net [36] for both
tasks.3 Then, we perform an ablation study to verify the
respective effectiveness of the two components in our method.
IQL [20] is set as the baseline approach that removes the two
components from our method, and DCCP is a variant of our
method that only removes the enhanced mean-field approxi-
mation. The effect of DCCP is demonstrated by comparing
DCCP with IQL, and the effect of the enhanced mean-field
approximation is demonstrated by comparing our method with
DCCP. Since the mean-field approximation is partly enhanced
by DCCP, we do not consider the variant of only removing
the DCCP component. All results are averaged over ten seeds.
The shaded area represents the 95% confidence interval for

3The value function factorization methods, e.g., QMIX and NDQ, use
a mixture network to predict the global value function and are only fea-
sible for fully-cooperative tasks. Hence, we do not evaluate them in the
mixed-cooperative ATSC environments where each agent has its own objective
of controlling the local traffic situation.

Fig. 4. Simulation environment of ATSC. (a) Traffic gird of 25 intersections
with four example flows. (b) Intersection. (c) Possible actions.

evaluation curves, and the standard errors are presented for
numerical results.

A. Adaptive Traffic Signal Control
We conduct ATSC in a 5 × 5 synthetic grid map on

the standard traffic simulation platform SUMO, where each
agent (traffic intersection) observes a local part of the shared
environment and controls phases of its traffic signals. The
objective of ATSC is to eliminate the traffic congestion in
each intersection to generate low congestion of the whole
traffic system, i.e., minimizing the queue length and time
delay. The mixed cooperation occurs as each agent takes the
traffic situations in its local intersection and in the whole traffic
network as the objective. Fig. 4(a) shows a synthetic traffic
network that consists of multiple homogeneous intersections
in a 5 × 5 grid map. Let E, N, W, and S denote east, north,
west, and south, respectively. Each intersection consists of
two E-W two-lane streets and two N-S one-lane avenues,
as shown in Fig. 4(b). Each intersection has five available
phases (corresponding to the actions in RL settings) that are
EW-S, EW-L, W-LS, E-LS, and NS-LS, as shown in Fig. 4(c).

Following the same experiment setting in [54] and [55],
we use the traffic flow to describe the vehicles in the sim-
ulation. The traffic flow corresponds to generating vehicles
arriving at the traffic network with an origin and a destination,
i.e., an origin-destination (O-D) pair. An O-D pair is denoted
as x j -xk , where the origin x j and the destination xk denote
two different intersections in the traffic network as shown in
Fig. 4(a). In the simulation, the peak-hour traffic dynamics
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Fig. 5. Example of the time-varying function of traffic flows in ATSC.

is constituted by four time-varying traffic flows: F1, F2, f1,
and f2, each of which generates vehicles according to three
different O-D pairs. We show the flows F1 and f1 and their
O-D pairs in Fig. 4(a). F1 consists of three O-D pairs across the
main streets: x1-x25, x11-x15, and x21-x5. f1 consists of three
O-D pairs across the side avenues: x2-x24, x3-x23, and x4-x22.
Similarly, the flows F2 and f2 generate vehicles according to
O-D pairs that are opposite to those of F1 and f1, respectively.
In the simulation, the vehicles are generated from the four
traffic flows with time-varying flow rates. Fig. 5 presents the
flow rate function in our simulation of the four traffic flows.

The local observation of the i th agent is defined as

oi
t =

��
time_delayt [l],wavet [l]

�
l∈Li

(28)

where l is an incoming lane of the i th intersection, and Li is
the set of all incoming lanes of intersection i . time_delayt [l](s)
measures the cumulative delayed time of the first vehicle in
lane l at step t , and wavet [l](veh) measures the total number of
approaching vehicles along lane l within 50 m to intersection
i at step t . The action of the i th agent is represented as a
one-hot vector that denotes selecting one traffic phase from
Fig. 4(c) as

ai
t ∈ {EW-S, EW-L, W-LS, E-LS, NS-LS}. (29)

Specifically, when the next action is different from the last
one, an all-yellow phase will appear and last for 2 s to ensure
a safe switch between different phases. The reward of the i th
agent is defined as the weighted sum of the queue length and
time delay of the vehicles at the corresponding intersection as

r i
t = −

�
l∈Li

�
queue_lent+1[l]+ w · time_delayt+1[l]


(30)

where w is the trade-off coefficient that is set as 0.2,
queue_lent+1[l] is the measured number of vehicles in the
waiting queue, and the time_delayt+1[l] is the cumulative
delay time (in seconds) of the first vehicle along each incoming
lane l at the next time step.

We set the episode length to 720 where each learning
step takes 5 s in the simulator. After training for 1 M
steps, we evaluate the tested algorithms for one episode. The
performance metrics are the queue length and time delay at the
traffic intersections in evaluation. For each metric, we record

TABLE I

TRAINING HYPERPARAMETERS OF OUR METHOD IN ATSC

TABLE II

NETWORK ARCHITECTURE OF OUR METHOD IN ATSC

Fig. 6. Training losses of the three modules of our method in ATSC.

the average value over all steps of the evaluation episode
and the final value at the end of the evaluation. The kernel
size in our DCCP is fixed as 3 × 3, and each agent can
only access the information of its neighbors within the 3 ×
3 area. Tables I and II present training hyperparameters and
the network architecture, respectively.

First, we simply record the communication overhead. IQL
incurs no communication, and TarMAC takes 24∗25 rounds of
communication as each agent needs to receive the information
from the other 24 agents. In contrast, IC3Net and our method
only cost 8 ∗ 25 rounds of communication as each agent
only needs to receive the information from its eight neighbors
within the convolution kernel. It can be observed that local
communication saves communication resources compared to
the global protocol, especially when the scale of the neigh-
borhood is far smaller than the total scale.

Fig. 6 shows the training loss curves of the OPN, PRN,
and VFN modules in our method. It can be observed that
the three modules are stably trained as the losses generally
decrease during training. Fig. 7 presents the evaluation curves
of the received return, queue length, and time delay at the
intersections, and Table III gives the numerical results in
terms of the average and final values in evaluation. Overall,
our method performs the best and solves the ATSC task
with its efficient coordination. Using our method, the traffic
congestion quickly decreases after peak flows, and is almost
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Fig. 7. Evaluation results of the received return, queue length, and time delay in ATSC. (a) Received return. (b) Queue length. (c) Time delay.

TABLE III

NUMERICAL RESULTS OF THE AVERAGE QUEUE LENGTH, FINAL QUEUE LENGTH, AVERAGE TIME DELAY, AND FINAL TIME DELAY IN ATSC

Fig. 8. Example screenshots of evaluation combat scenarios SMAC. (a) 3 m combat scenario. (b) 8 m combat scenario. (c) 5 m versus 6 m combat scenario.
(d) 2 c versus 64 zg combat scenario.

eliminated at the end as both the final queue length and time
delay are approximately zero. IC3Net obtains unsatisfactory
performance as the traffic congestion quickly increases after
peak flows and remains at a high level for a long time.
Since IC3Net simply averages the messages from neighboring
agents, it cannot differentiate valuable information that helps
cooperative decision making. TarMAC performs slightly better
than IC3Net, which is supposed to benefit from allowing each
agent to actively select which agents to address messages to.

Next, we conduct a comprehensive ablation study. IQL
performs the worst due to the lack of communication across
agents. The distinct superiority of DCCP over IQL veri-
fies the effectiveness of our communication protocol. More-
over, DCCP mostly obtains better performance than IC3Net
and TarMAC, which demonstrates the advantage of our
communication protocol over other communication learning
approaches. At last, the performance improvement of our
method over DCCP shows that the enhanced mean-field
approximation can further facilitate multi-agent coordination.

Further, we perform the ablation study to investigate the effects
of the OPN and PRN modules on our method, corresponding
to the variants of removing OPN (No OPN), removing PRN
(No PRN), and removing both (No OPN and PRN).4 The
results show that the performance of our method degener-
ates when removing either module of OPN and PRN, and
degenerates more when removing both modules. It success-
fully verifies that both the OPN and PRN modules boost
the multi-agent coordination due to facilitating more accurate
interactions between agents.

B. StarCraft II Multi-Agent Challenge
As benchmark testbeds, SMAC provides fully cooperative

battles for a group of agents learning to defeat the oppo-
nent team. Typically, the game is framed as a competitive

4We ablate the OPN loss LOPN
ϕ or the PRN loss LPRN

φ in (26) when removing
the OPN or the PRN module, respectively, and we ablate both losses when
removing the two modules together. During ablation, we keep the network
architecture unchanged.
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TABLE IV

ENVIRONMENT SETTINGS OF THE FOUR EVALUATION COMBAT SCENARIOS IN SMAC

Fig. 9. Win rate during training in SMAC. (a) 3 m, very-hard. (b) 8 m, very-hard. (c) 5 m versus 6 m, very-hard. (d) 2 c versus 64 zg, very-hard.

problem: an agent takes the role of a human player, making
macromanagement decisions and performing micromanage-
ment as a puppeteer that issues orders to individual units
from a centralized controller. In SMAC, each unit’s actions
are conditioned on local observations instead of the global
game state. Then, in several challenging combat scenarios, the
group of these independent agents battles an opposing army
under the centralized control of the build-in game AI. These
challenges require agents to learn cooperative behaviors under
partial observability, e.g., focus fire and avoid overkill. Each
scenario consists of two armies of units battling to defeat each
other, one controlled by the learner and the other controlled by
the built-in game AI. An episode ends when all units of either
army have died or when a predefined step limit is reached.
The goal is to maximize the win rate of the learned policies,
i.e., the expected ratio of games won to games played.

TABLE V

TRAINING HYPERPARAMETERS OF OUR METHOD IN SMAC. T IS THE
NUMBER OF MAXIMUM STEPS IN EACH LEARNING EPISODE

Agents receive local observations drawn within their field
of view, which is called sight range. Agents can only observe
other agents if they are both alive and located within the sight
range. For agent i , the observation is formalized as

oi
t =

��
distancei, j ,�xi, j ,�yi, j ,

health j , sheild j , unit type j

�
∀ j∈U (31)

where j is a unit in the unit set U within the battle, distancei, j

is the distance between units i and j , and �xi, j and �yi, j are
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TABLE VI

NETWORK ARCHITECTURE OF OUR METHOD IN SMAC

TABLE VII

EVALUATION WIN RATE OF THE TRAINED MODELS IN SMAC

the offsets between i and j in axes x and y, respectively.
health j , sheild j , and unit type j denote the attributes of unit j .
Specifically, if unit j is not in the sight range of i , the above
observation vectors related to unit j are padded with 0.

The available actions consist of move[direction] (four direc-
tions: north, south, east, and west), attack[enemy_id], stop, and
no_op. Dead agents can only take no_op action while alive
agents cannot. Specifically, when unit j is out of the shooting
range of unit i , the action of attacking j is not available.
We formalize the action space of agent i as

ai
t ∈{no_op, {move[directiond]}, {attack unit j} j∈U }. (32)

The reward contains three parts of the damage to enemies,
killing enemies, and winning the battle as

r i
t =

�
j∈E

�
�health j +�shield j


+ 10 ·�# dead enemies+ 200 · win flag (33)

where �# dead enemies is the increased number of dead
enemies, and win flag is the flag of winning the combat.

Since many QMIX-based approaches are verified to achieve
good performance in fully cooperative tasks, we take the fol-
lowing state-of-the-art MARL algorithms as baselines: QMIX,
TarMAC+QMIX, and NDQ.5 We evaluate the methods on four
combat maps: 3 m, 8 m, 5 m versus 6 m, and 2 c versus
64 zg. In these maps, the neighboring relationship between

5NDQ itself is based on QMIX.

agents is predefined according to their initial positions, and
the convolution kernel of DCCP is with the same size as
the kernel in ATSC. With this neighborhood formalization,
we are capable of evaluating our method beyond the grid-
world environments. Fig. 8 shows example screenshots of
the four combat scenarios, and Table IV presents the set-
tings of the evaluation combat scenarios. The difficulty of
StarCraft II built-in AI is set to very-hard in all maps. In each
episode, positive rewards are given for the positive health
point difference between the controlled agent team and the
opponent, and otherwise, the reward is zero. A large positive
reward is given for winning the episode by eliminating the
opponent, and otherwise, the reward is zero. We evaluate the
tested methods per 100 k steps during training, and in each
evaluation, we run the game for 20 episodes to calculate the
win rate. Tables V and VI present training hyperparameters
and the network architecture, respectively.

Fig. 9 presents evaluation curves of the win rate in the sce-
narios with very-hard built-in AIs, and Table VII shows numer-
ical results of evaluating the trained models. It is observed
that our method generally achieves the highest and the most
stable win rate in these combat maps. The performance gap
in terms of the final win rate is more pronounced in the
complex combat maps of 5 m versus 6 m and 2 c versus
64 zg, which demonstrates the capability of our method for
efficiently facilitating coordination across agents. Moreover,
our method learns the effect of joint actions without using
the privileged state information from the environment, while
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SMAC can provide access to this information for methods
like TarMAC. This makes our method applicable for a wider
range of scenarios, as in many multi-agent tasks we do not
have access to privileged full state information even during
training.

VI. CONCLUSION

In this article, we propose a new MARL method based on
local communication learning. We facilitate efficient coordi-
nation between neighboring agents by exploiting the ability
of depthwise convolution to learn a local communication
protocol, and by enhancing the mean-field approximation
with a supervised PRN and a learnable compensation term.
Empirical results and an ablation study show that our method
achieves efficient coordination and outperforms several base-
line approaches on the ATSC and SMAC tasks. Our future
work will focus on learning more efficient communication
protocols using graph structures and attention mechanisms.
Another insightful direction would be to develop efficient
local communication protocols for more complex multi-agent
systems where the neighborhood may vary with a dynamic
communication topology.
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