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Dissimilarity Analysis-Based Multimode Modeling
for Complex Distributed Parameter Systems

Zhi Wang

Abstract—For complex distributed parameter systems (DPSs)
with strong nonlinearities and time-varying dynamics, the con-
ventional spatiotemporal modeling methods become ill-suited
since the elementary assumption that the process data follow
a unimodal Gaussian distribution usually becomes invalid. In
this paper, a multimode method is proposed for modeling of
such systems. First, the original operating space is partitioned
along the time dimension into several subspaces via modi-
fied dissimilarity analysis. Each subspace represents the local
spatiotemporal characteristics of the original system. Second,
the Karhunen-Loéve decomposition (KLD)-based spatiotemporal
modeling approach is applied to approximate the local dynamics
of each subspace. Finally, an ensemble model is obtained using
the soft weighting sum of the local ones, where the correspond-
ing weights are calculated by principal component regression. By
properly decomposing the original space into several local parts,
the ensemble model is capable of handling the strong nonlinear-
ities and time-varying dynamics of the system. The validity and
efficiency of the proposed method are verified on two represen-
tative applications: 1) a one-dimensional parabolic catalytic rod
and 2) a two-dimensional curing thermal process. The experimen-
tal results show that the proposed method provides a superior
performance regarding modeling accuracy compared to several
baselines.

Index Terms—Dissimilarity analysis, distributed parameter
systems (DPSs), multimode modeling, principal component
regression (PCR), subspace partitioning.

I. INTRODUCTION

ANY chemical or physical industrial processes (e.g.,

battery thermal process, fluid-flow process, and
convection—diffusion—reaction process) belong to distributed
parameter systems (DPSs), where the system’s input/output
may change along both the time and space dimensions [1]-[3].
Modeling and control of DPSs play a significant role in
systems engineering, control theory, and industrial applica-
tions [4]-[6]. With recent advance in the sensor, actuator, and
numerical computing technologies, modeling and control of
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such spatiotemporal systems become feasible and practical in
real applications [7].

The first-principle modeling methodology for known DPSs
usually leads to the partial differential equations (PDEs) [8].
For real-time controller implementation and synthesis, the
PDE is typically transformed to the low-order ordinary dif-
ferential equation (ODE) to represent the dominant dynamics
of DPSs. Advanced model reduction methods are on the basis
of the time—space separation framework where the process out-
puts are decomposed into a decoupled form consisting of sev-
eral dominant spatial basis functions and temporal coefficients.
Many analytical methods are applied for this transformation,
such as the finite difference method (FDM) [9], the finite
element method (FEM) [10], and the spectral method [11].
Nevertheless, the above model reduction approaches require
knowing the precise PDE of the system in advance, which is
generally not applicable in most real industrial processes. On
the other hand, data-driven methods have the advantages of
fewer requirements on the physical mechanism of the process,
higher accuracy, and better generality [12]. Karhunen—Logve
decomposition (KLD) has been widely applied to derive the
dominant features of DPSs with the lowest order of empirical
basis functions from sampled snapshots [13].

The time—space separation methods based on KLD
have achieved wide applications for industrial distributed
processes [14]. Under the assumption that the process data
belong to a linear space, KLD relies on the Euclidean dis-
tance as the metric to minimize, and cannot efficiently acquire
the nonlinear degrees of freedom in complex systems. This
intrinsic property leads to the deficiency that conventional
modeling techniques are only adequate for limited types of
processes whose variables are linear, unimodal, and Gaussian
distributed. In reality, those restrictions can be easily violated.
Snapshots generated by complex DPSs belong to manifolds
for which the geodesics do not correspond in general to
the Euclidean distance. Instead they have strong nonlinear-
ity and time-varying dynamics subject to parameter varia-
tions [15], hyperbolic dynamics like traveling hump [16],
changing domains [17], etc. A global reduced-order basis
(ROB) often lacks robustness with respect to such character-
istics that are part of the normal process behavior. Indeed,
using only one global ROB for model reduction of nonlinear
systems probably produces an expensive set of basis functions
for a desired modeling accuracy, or a too small set that cannot
span the different local characteristics of snapshots. Therefore,
a single set of global basis functions usually provides
an unsatisfactory modeling performance for approximating
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complex DPSs with strong nonlinearities and time-varying
dynamics [18].

Snapshots associated with a nonlinear, dynamic, or paramet-
ric system could represent multiple regions of the state space.
Different regions of the snapshots could correspond to diver-
gent landscapes of the associated physical process, which can
be approximated more precisely by a group of local ROBs
than by only one global basis. Several results were reported
relevant to this concept. Dihlmann et al. [19] constructed and
exploited ROBs by using adaptive time domain partition. By
using machine learning algorithms like K-means [18], global
optimum search [20], or a heuristic procedure [21], the time
domain is partitioned into multiple subspaces where snap-
shots exhibit obviously different characteristics, and a local
ROB is computed for each subspace. In a similar spirit, the
spatial domain is decomposed into several subspaces before
the local ROBs are constructed independently [22], [23].
Additionally, subspace modeling concepts have been widely
investigated for process monitoring [24], fault detection [25],
fault diagnosis [26], etc.

In this paper, we present an integral multimode method
for modeling complex DPSs. To handle the strong nonlin-
earities and time-varying dynamics, a two-step solution is
proposed: 1) subspace decomposition via modified dissim-
ilarity analysis and 2) local model ensemble via principal
component regression (PCR). In recent years, a series of
successful theory researches and applications have demon-
strated that the dissimilarity analysis method can quickly and
effectively detect the change of correlations among process
variables [27], [28]. We modify the conventional dissimi-
larity analysis method to improve its generalization ability
on real-world datasets. The modified dissimilarity analysis
is employed to partition the original operating space along
the time dimension into several subspaces, which represent
the local characteristics of the original system. Then, the
local dynamics of each subspace is estimated using the spa-
tiotemporal modeling approach, where the basis functions are
extracted by KLD and the corresponding temporal coefficients
are learned by extreme learning machine (ELM) due to its
simplicity powerful approximation ability. Finally, an ensem-
ble model is obtained using a soft weighting sum form of
each local spatiotemporal model. To avoid multicollinearity,
PCR is utilized to calculate the weights of local models. By
the mechanism of partitioning snapshots into subspaces with
divergent local characteristics along the time dimension, the
modeling framework can better approximate strong nonlinear-
ities and time-varying dynamics of complex DPSs. With the
multimode strategy, the modeling accuracy can be improved,
and a larger operating range can be handled for many practical
systems.

To verify the proposed method, experiments are carried out
on two representative complex DPSs: 1) a simulated infinite-
dimensional parabolic catalytic rod with strong nonlinearities
and 2) a real curing thermal process with a large-scale oper-
ating domain. The proposed multimode modeling method is
first compared to the conventional global modeling to demon-
strate the advantage of subspace partitioning. Further, the
proposed method is compared to a naive subspace modeling
method with blind partitioning to show the effectiveness of
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modified dissimilarity analysis. Experimental results show that
the proposed method provides a superior performance in terms
of modeling accuracy over the baselines.

The rest of this paper is organized as follows. Section II
presents the preliminaries, including the conventional spa-
tiotemporal modeling and dissimilarity analysis. In Section III,
the framework of the proposed method is presented, followed
by the implementation details of subspace decomposition and
local model ensemble. Experiments on a one-dimensional
(1-D) parabolic catalytic rod and a two-dimensional (2-D) cur-
ing thermal process are conducted in Section IV. Section V
presents concluding remarks.

II. PRELIMINARIES
A. Spatiotemporal Modeling

In this paper, we consider a general type of parabolic DPSs
with a state-space description of the following PDE:

Ay(x, 1) dy ady r
= s, —= | +b t 1
o g<y ™ oxd | T (Du(t) (1)
subject to the mixed-type boundary conditions
ay 8d_1y
Q<y,—,-..,—_ =0 ()
dx 8Xd ! X=Xq; OF X=Xp
and the initial condition
y(x, 0) = yo(x) 3)

where y(x, r) € R” is the state variable, and x € [x4, xp] C R
and ¢+ € [0,00) are the position and time, respectively.
u(t) € RP denotes the temporal input vector, G € R" is a
complex vector function that contains a nonlinear spatial dif-
ferential operator of an even order d with respect to x, b(x)
denotes a matrix function with proper dimensions describing
the distribution of inputs with respect to the space domain,
@ denotes a nonlinear vector function, and yg(x) denotes
a smooth vector function regarding the initial output. The
time—space separation framework [1] is widely investigated
for modeling such unknown nonlinear DPSs. A set of orthog-
onal spatial basis functions, {(pi(x)}le , is first extracted using
KLD to capture the most dominant dynamics of the distributed
process. Then, a reduced-order model, {al-(t)}f.‘zl, is identi-
fied in the low-dimensional temporal space using ELM [29].
Finally, combining the decoupled basis functions and the low-
order temporal model can reproduce the spatiotemporal output
over the entire time and space domain. More details about
spatiotemporal modeling can be found in [1].

B. Dissimilarity Index

Dissimilarity analysis is a data-driven classification method
for evaluating the difference between the distributions of
two separate datasets [27], [28]. By utilizing eigenvalues of
the covariance matrices, it explores the correlation structures
between data distributions during different periods, and further
detects the probable drift of operating situations.

Considering the following two datasets of snapshots: Y
and Y,, each column of which is an n-dimensional vector
of spatial measurements from (1). Y;, (i = 1,2) contains ;
columns of snapshots. The covariance matrices are computed
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as &; = Y,-YiT/l,-. The covariance matrix of the mixture
datasets is given by

— I 153
= = =)+
h+bh h+Dbh

r—

By using an orthogonal matrix Py, E is diagonalized as
Pg EPy = A, then, Y; is transformed into Z; as

l; _1_r li T
Z: = AT 2PY; = PY; 5
VL +h TN+ ©)

where P = POA’(I/ 2) is the transformation matrix.
The covariance matrices of the transformed data matrices

1 [;
Y =-ZiZ = —
l; h+Db
satisfy the property of X; + ¥, = I. The two covariance
matrices can be decomposed into a set of eigenvalues and

eigenvectors as

2,. 4)

PTEP (6)

38 =gl (7

where AJ; and §Jl are the eigenvalues and the corresponding
eigenvectors, and the superscript j denotes the jth eigenvalue
or eigenvector. The following relationships can be derived:

J AYY
o8] = (1- )8,
These two correlation equations indicate that the transformed
data matrices, Z; and Z,, have the same group of principal
components that are ordered in reverse.
Based on the above observation, the metric dis(-) is finally

derived for measuring the dissimilarity between snapshots Y
and Y, as

1= =, ®)

n

4
mqn,n)=;§:@f-0$? ©)
=1

III. MULTIMODE MODELING
A. Framework

As illustrated in Fig. 1, the primary framework of the
proposed multimode modeling methodology can be summa-
rized as follows.

1) Modified dissimilarity analysis is first applied to parti-
tion the original space along the time dimension into
several subspaces. Each subspace represents a kind of
local characteristics.

2) The local dynamics of each subspace is esti-
mated using the time—space separation-based modeling
method.

3) The ensemble model is obtained using a soft weighting
sum form of the local ones in the subspaces, where the
corresponding weights are calculated by PCR.

It can be observed that, the difference between the proposed
method and the conventional global modeling lies in a two-
step procedure: 1) subspace decomposition and 2) local model
ensemble. The snapshots are partitioned into multiple sub-
spaces, where local models are estimated to capture the diver-
gent local characteristics. With this mechanism, the modeling
framework can better approximate the strong nonlinearities
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Fig. 2. Subspace decomposition via modified dissimilarity analysis.

and time-varying dynamics, and can handle a larger operat-
ing range for complex DPSs. Moreover, since each subspace
contains only a fraction of the snapshots, the computational
complexity for calculating the BFs is reduced by solving a set
of smaller eigenvalue problems.

B. Subspace Decomposition

For simplicity, mark y; = y(x, #;) as the n-dimensional spa-
tial measurement at time step #. Fig. 2 illustrates the idea
of subspace decomposition via modified dissimilarity anal-
ysis. First, [ snapshots are collected into m small batches
(Y1,Y2,...,Y,,) with the same window size of T, and the
initial batch of snapshots Y| belongs to the first nominal sub-
space S1. Assume that there are K existing subspaces before
the ith batch of snapshots (Y;,i = 2, ..., m) is available. Then,
the modified dissimilarity analysis is applied for assigning the
subspace which the new batch Y; belongs to. Specifically,
the dissimilarity indices, dis(Y;, Sj),j = 1,...,K, between
the new batch Y; and all existing subspaces are computed
to find out the Jth subspace that derives a minimal dissim-
ilarity to the new batch. That is to say, the new batch most
likely belongs to subspace S;. Next, the minimal dissimilarity
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Algorithm 1: Subspace Decomposition via Modified
Dissimilarity Analysis

Input: Batch size T; number of batches m;
dissimilarity threshold §
Output: K subspaces (Sy, ..., Sk)
1 Divide the [ snapshots into m equal batches as
Y,Y,....Y,

2 Y| <« first batch of snapshots, S; < first subspace
3 Initialize the number of existing subspaces: K <— 1
4 Initialize the index of the pending batch: i <2

5 while i < m do

6 Y; < snapshots during re[(i—1)*T, ixT)

7 J < argminjepy g dis(Y;, Sj)

8 if dis(Y;, S;) > § then

9 Generate a new subspace Sk

10 Assign Y; to Sg41

11 K<~ K+1

12 else

13 Assign Y; to Sy

14 end

15 i<—i+1

16 end

dis(Y;, Sy) is compared with a predefined threshold § to fur-
ther determine whether the new batch belongs to subspace Sj.
If dis(Y;, Sy) > §, it indicates that the new batch is sufficiently
different from subspace S; and any other existing subspace.
Consequently, a new subspace Sk should be generated that
the new batch belongs to. If dis(Y;, S;) < §, then the new
batch Y; is confirmed to belong to subspace S;. Finally, all
the snapshots are decomposed into K subspaces where local
models are constructed to approximate the local characteris-
tics. Together, the implementation of the proposed subspace
decomposition is presented in Algorithm 1.

In Section II of the conventional dissimilarity analysis, the
original data matrices Y; are transformed into Z; by the trans-
formation matrix P, where P = POA_(I/ 2 It assumes that the
overall covariance matrix Z is full rank and hence the eigen-
value matrix A is invertible. However, the output snapshots of
distributed processes may be highly correlated, or the collected
snapshots may not be representative on all the n dimensions of
spatial measurements. These factors in practical applications
could result that the covariance matrix E is not full rank (i.e.,
rank(E) < n), and hence A is not invertible. In response to
this limitation, we modify the conventional dissimilarity anal-
ysis to improve its generalization ability on datasets where the
covariance matrix is not full rank.

The function of transformation matrix P € R"*" is to map
a dataset from the original n-dimensional space to a new
n-dimensional one. Let r denote the rank of covariance matrix
E. When r < n, the original data contains n — r redun-
dant dimensions and it intrinsically can be mapped into an
r-dimensional space where each dimension is independent of
others. Based on this insight of data statistics, we redefine
the transformation matrix P into a lower-dimensional form
P, € R™" as P, = PO,Ar_(l/z), where Py, is formed by the
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first r columns of Py, and A, denotes the rth leading principal
submatrix of A.

Through the reduced-order projection by the new transfor-
mation matrix P,, the n-dimensional snapshots Y; is mapped
to an r-dimensional dataset Z; as

Zi= |——Py,
! Lh4+bh "'

The covariance matrices of Z; becomes
li
T h+b

Add the two covariance matrices together we can obtain

(10)

T =
Pr .’:.,'Pr.

(1)

_1 1
%+ X, =PI'EP, = A, *P] PoAP]Py.A, ?

_1 A
= A, ?P(,[Po, P0<nr>][ "o }
(n—r)

pP! } —1
X T r A 2
[PO(n—r) '

= Irxr~

12)

It can be confirmed that the lower-order transformed datasets
(Z1,Z,) also share the same group of principal components
that are ordered in reverse. Finally, the modified dissimilarity
index dis is defined as
dis(Yy. Yy) = & Xr:(x —05)’
1, X2) = , pr ‘j .

13)

where A; is the eigenvalues associated with the covariance
matrix of the transformed dataset in the r-dimensional space.

Remark 1: The number of subspaces depends on the
predefined “dissimilarity threshold §,” a fixed hyperparameter
that controls the instantiation of new subspaces. Generally, a
smaller threshold leads to more subspaces, which is supposed
to better approximate the original system since more types of
local characteristics can be separated and discovered. On the
other hand, the emergence of more subspaces will increase
the computational complexity of the system due to involving
more spatiotemporal modeling procedures. In practice, the dis-
similarity threshold can be adjusted according to the process
requirements, which can be considered as a tradeoff between
modeling accuracy and computational efficiency.

C. Local Model Ensemble

After subspace decomposition, each subspace is estimated
using the time—space separation modeling method [1], where
the local spatial basis functions are learned by KLD and the
corresponding time coefficients are learned by ELM [29].
As shown in Fig. 3, once all the local spatiotemporal mod-
els are constructed, the global spatiotemporal model can be
aggregated using soft weighting sum form as the following:

T iy 1) = wi 194 (i, 1) + Wi 23 (i, 1) F - - A Wi KIS (X3, 1)
(14)

where w; j, (j = 1, ..., K) denotes the weight of jth local spa-
tiotemporal model %{(x, f) on sensor i. The popularly used
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Pi (x.1)

Local spatiotemporal model 1

Y

A 4

Local spatiotemporal model 2

Local spatiotemporal model K

Fig. 3. Ensemble of local spatiotemporal models.

method to estimate the weight w; ; is the least square method
with the solution

—1 .

W;=(H/H) HO0;, i=1,...,n (15)

where W; = [w;1,wi2,...,w; K]T represents the weight

vector on sensor i, H; = [OilT, OZ-ZT, R OlKT] is the 10cal

spatiotemporal model output matrix on sensor i, Oi =

[, (xi, 1), ¥, (xi, 2), - ., . (xi, 1,)] represents the output vec-
tor of the jth local spatiotemporal model on sensor i,
ny denotes the number of training samples, and O; =
y(xi, 1), y(xi, 12), ..., y(xi, tn”)]T represents the actual output
vector on sensor i.

The downside of this least square method is that each
local spatiotemporal model represents the same system, and
they are heavy correlational with each other. Therefore, the
weight calculated using (15) often has the characteristic of
multicollinearity, which will decrease the model accuracy. To
address this problem, PCR can be applied here to derive a
robust weight. For simplicity, let H; = F_I, 0; = (_), and
W; = W. With PCR, H can be described as the following:

H=cd{ +cd) + - +ckdy (16)
where ¢; = ojp; and dj = v; represent the principal component
and the load component of the jth pivot element, respectively.
They both are a unit orthogonal vector. In general, the first g
term of (16) can represent the dominant dynamic, where the
determination of ¢ is as same as the KLLD. Therefore, (16) can
be rewritten as

H=H,=CD" (17)
where C = [c1,¢2,...,¢4] and D = [dy,d>,...,d,].
Then, (14) can be described as the following:

O =HW =CD"W. (18)

_Suppose that Wq = DTW, then the least square solution of
W, can be calculated as
w,=(c"c)”'c"o. (19)

Since D is an orthogonal vector, DT = D~!, so the weight W
can be estimated as

W =DW, =D(C"c)”'C"0. (20)
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Fig. 4. Classical catalytic rod with the reaction in the form of A — B.

IV. SIMULATION EXPERIMENTS

To comprehensively evaluate the validity and efficiency of
the multimode modeling method, two complex DPSs are inves-
tigated. One is a 1-D parabolic catalytic rod system with strong
nonlinearities, and the other is a 2-D curing thermal process
with a large-scale operating domain. The spatiotemporal snap-
shots are collected from the simulation by using the finite
difference approach and a real-time experiment, respectively.
To show the advantages of our method, we compare it to two
conventional modeling approaches. One is the conventional
global modeling that constructs one single spatiotemporal
model for all the snapshots. The other one, denoted as “blind
subspace modeling,” blindly partitions the snapshots into dif-
ferent subspaces and also construct a local spatiotemporal
model for each subspace. Let y(x, t) and yx(x, ) be the mea-
sured and the predicted system’s output, respectively. Four
performance metrics are set up for modeling evaluation as
follows.
1) Spatiotemporal Error: e(x,t) = y(x, t) — yr(x, 1).
2) Spatial Normalized Absolute Error: SNAE(f) =
(1/m) Y0y le(xi, 1),

3) Temporal Normalized Absolute Error: TNAE(x) =
(/D) Yiey letx, D).

4) Root of Mean Squared Error:

3t 17, a3 AP

RMSE =

A. Case 1: Parabolic Catalytic Rod

Fig. 4 illustrates the classical transport-reaction process con-
sisting of a long and thin rod within a reactor in the chemical
industry [30]. The rod reactor is fed with pure species A,
and a zeroth-order exothermic catalytic reaction in the form
of A — B takes place within the rod. Meantime, a cool-
ing medium contacting the reactor is employed to cool the
exothermic reaction procedure. The mathematical formulation
describing the internal temperature evolution in the rod leads
to the typical parabolic PDE [30]

dy(x, ) 3%y(x, 1) (—ﬁ —y)
ar  ox2 thrle e

+ Bu(d" u(t) — y(x, 1)

subject to the Dirichlet boundary and initial conditions

21

¥0,0=0, y@@ =0, yix 0 =yox)

where y(x, f) is the temperature within the rod, u(f) is the
manipulated input or the temperature of the cooling medium,
and b(x) is the distribution of actuators in the spatial domain.
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Fig. 5. Case 1: Measured output for multimodeling.

The process parameters are set as: heat of reaction fr = 50,
heat transfer coefficient g, = 2, and activation energy y = 4.

We employed four actuators u(r) = [ui(?), cus(O)
for persistently stimulating the full spectrum of the dynam-
ics of the distributed process. These temporal inputs are set
as ui(t) = 1.1 + (4 + 2rand) exp(—i/5) sin(t + 2rand) —
0.4 exp(—i/20) sin(5¢ + 2rand), i = 1,...,4), where rand
is a uniform random distribution on the range of [0, 1].
The actuators are located in the spatial domain according to
the distribution function b(x) = [b1(x), ..., bs(x)]7, where
bix) = Hx—({—Dn/4) —Hx —in/4), (i = 1,...,4)
and H(-) is the standard Heaviside function. In addition, more
types of system’s dynamics could be excited by setting more
random phases or amplitudes.

The number of distributed sensors needed for spatiotempo-
ral modeling relies on the goal modeling accuracy and the
physical complexity of the specific system. In real industrial
processes, the parameters of the system are easy to change
due to diverse time-varying dynamics, such as catalyst deac-
tivation, preventive maintenance, seasonal variations, sensor
and process drifting, unknown disturbances, etc. [27], [31].
The initial condition yg(x) is prescribed to stay steady with
the temporal input u;(r) = 1.1, (i = 1,...,4). Twenty sen-
sors that are uniformly distributed in the spatial domain are
employed for measuring the system’s output (n = 20), and
the sampling time interval is Az = 0.01. The white noise with
mean zero and standard deviation o (x;) = Ay(x;)ng, where
Aq(xi) = (max(y(x;, 1)) — min(y(x;, 1)))/3, (i =1,...,N) and
ng = 1%, is mixed into the noise-free data for simulating a
noisy output as shown in Fig. 5. Among them, the first 4000
snapshots are used for training the model, while the last 4000
snapshots are used for testing.

Operating space division is a critical procedure to ensure the
precision of the final multimode model. In the first step, mod-
ified dissimilarity analysis is applied here and the operating
space can be divided from a coarse scale to a fine one pro-
gressively as the number of clusters increases. In our case,
two clusters are obtained, where each cluster represents a
subspace spatiotemporal dynamics. Within each subspace, the
local spatiotemporal model is estimated corresponding to local
snapshots. KLD is first applied for deriving the spatial basis
functions. The first three dominant basis functions which are
capable of capturing more than 99% of the dominant dynamics
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Fig. 6. Case 1: Three dominant spatial BFs in two subspaces of the proposed
method. (a) Subspace S7. (b) Subspace S;.

of the system are illustrated in Fig. 6. It can be observed that
the two subspaces are a little different, which is reflected by
the divergence of their third modes.

Based on the reduced-order subspace of the distributed pro-
cess, each corresponding temporal model in the reduced-order
space is approximated using ELM with respect to the corre-
sponding input signals. The local spatiotemporal synthesis is
reproduced by combining the derived basis functions and the
estimated temporal model. In the second step, the ensemble
model is obtained by aggregating the two local spatiotemporal
models using (14). So far, the training process of the proposed
multimode modeling method is completely finished. To test
the model performance, the 4000 testing input signals are
used for exciting the obtained multimode model. Fig. 7 shows
the modeling performance of the proposed method regarding
the predicted output and the corresponding error distribution,
respectively. It can be observed that the multimode modeling
method obtains a well-performing modeling accuracy in the
classical catalytic rod system.

To further verify the model performance, the traditional
global modeling and blind subspace modeling methods are
adopted for comparison under the same configuration. These
two methods are simulated at the same conditions with the
proposed method. Fig. 8 presents the modeling error along
the time direction (SNAE) and the space direction (TNAE),
respectively. It can be observed that the proposed method
improves modeling accuracy by providing smaller approxi-
mation errors than the other two methods. Moreover, Fig. 9
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Fig. 7. Case 1: Modeling performance of the proposed method: (a) predicted output and (b) error distribution, using testing data.
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The curing oven is a typical DPS with a large-scale operat-
ing domain, which is widely utilized for the packaging process
of semiconductor backend [13]. The thermal curing process
also has many time-varying factors and unknown dynamics,

including time-varying boundaries and parameters, which can
introduce both temporal and spatial variability into its nomi-
nal situations. These aforementioned factors can impose great
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challenges to modeling the curing process [32]. The configu-
ration of the curing oven is depicted in Fig. 10. There are four
heaters placed at the top of the curing oven. First, by using
epoxy, we are able to adhere the chip to the die pad or the
lead frame cavity. Next, we employ a specific temperature for
curing the epoxy in the chamber. Keeping the oven tempera-
ture uniformly distributed plays a significant role in assuring
a high quality of the real curing system. Therefore, it is very
important to acquire a precise spatiotemporal model of the cur-
ing oven. In our experiment, 16 sensors are uniformly located
on the lead frame as shown in Fig. 11. The four heaters were
controlled by a controller. Random input signals are employed
for exciting the curing system. Totally 2800 measurements are
obtained at 16 sensors with the sample interval At = 10 s.
The first 2000 measurements are employed to train the mul-
timode modeling process, and the last 800 measurements are
employed to verify the effectiveness of the developed model.

First, the above three methods are applied to derive the cor-
responding spatiotemporal distribution model of the snapshots
with two dominant basis function selected. Three subspaces
are obtained using the modified dissimilarity analysis. The
spatiotemporal error distribution at the (2800th) sample is
shown in Fig. 12. Correspondingly, Fig. 13 illustrates the
SNAE over the time direction and the TNAE over the space
direction. The RMSEs of the three methods are: 1) global
modeling: 2.6483; 2) blind subspace modeling: 2.4896; and
3) the proposed modeling: 2.1243. It can be observed that
the proposed modeling method obtains a superior modeling
accuracy than the other two methods. Compared to the global

method, the blind subspace modeling obtains an improved
modeling accuracy by taking advantage of several sets of basis
functions. However, the system’s dynamics are still not recon-
structed accurately since the snapshots with largely different
characteristics may be assigned to the same subspace. In con-
trast, the proposed method shows a promising performance
with smaller approximation errors. Obviously, the reduced-
order model approximated by the proposed method is much
closer to the real full-order system. The improved performance
benefits from the modified dissimilarity analysis that assigns
snapshots with large differences to different subspaces.

V. CONCLUSION

In this paper, an integral multimode method is developed
for spatiotemporal modeling of complex DPSs. To handle the
strong nonlinearities and time-varying dynamics, a two-step
solution is proposed: 1) subspace decomposition via modified
dissimilarity analysis and 2) local model ensemble via prin-
cipal component analysis. First, the original operating space
is partitioned along the time dimension into several subspaces
with divergent local characteristics. Second, a spatiotemporal
modeling approach is applied to approximate the local dynam-
ics of each subspace, where the basis functions are extracted by
KLD and the corresponding temporal coefficients are learned
by ELM. Finally, an ensemble model is aggregated using the
soft weighting sum of the local ones, where the corresponding
weights are learned by PCR. By the mechanism of partition-
ing snapshots into subspaces with divergent characteristics,
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the proposed method can provide a better approximation and
prediction of the original system. Experiments on a parabolic
catalytic rod and a real snap curing oven system show that
the proposed method obtains a better performance regard-
ing modeling accuracy compared to several baselines. Our
future work will tackle potential multimode modeling methods
from other perspectives, such as better subspace partition-
ing methods, partitioning the operating space along the space
dimension, or along both the time and space dimensions.

REFERENCES

[1] H.-X. Li and C. Qi, “Modeling of distributed parameter systems for
applications—A synthesized review from time-space separation,” J.
Process Control, vol. 20, no. 8, pp. 891-901, 2010.

[2] X.-X. Zhang, Y. Jiang, H.-X. Li, and S.-Y. Li, “SVR learning-based
spatiotemporal fuzzy logic controller for nonlinear spatially distributed
dynamic systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24,
no. 10, pp. 1635-1647, Oct. 2013.

[3] Y. Feng and H.-X. Li, “Dynamic spatial independent component analysis
based abnormality localization for distributed parameter systems,” IEEE
Trans. Ind. Informat., to be published. doi: 10.1109/TI1.2019.2900226.

[4] Y. Feng and H.-X. Li, “Detection and spatial identification of fault for
parabolic distributed parameter systems,” IEEE Trans. Ind. Electron.,
vol. 66, no. 9, pp. 7300-7309, Sep. 2019.

[5] X.-X. Zhang, L.-R. Zhao, J.-J. Li, G.-T. Cao, and B. Wang, “Space-
decomposition based 3D fuzzy control design for nonlinear spatially
distributed systems with multiple control sources using multiple single-
output SVR learning,” Appl. Soft Comput., vol. 59, pp. 378-388,
Oct. 2017.

[6] Z. Wang, H.-X. Li, and C. Chen, “Reinforcement learning-based optimal
sensor placement for spatiotemporal modeling,” IEEE Trans. Cybern.,
to be published. doi: 10.1109/TCYB.2019.2901897.

[71 Z. Wang and H.-X. Li, “Incremental spatiotemporal learning for online
modeling of distributed parameter systems,” [EEE Trans. Syst., Man,
Cybern., Syst., to be published. doi: 10.1109/TSMC.2018.2810447.

[8] C. Qi and H.-X. Li, “A time/space separation-based Hammerstein
modeling approach for nonlinear distributed parameter processes,”
Comput. Chem. Eng., vol. 33, no. 7, pp. 1247-1260, 2009.

[9] L. Guo and S. A. Billings, “State-space reconstruction and spatiotem-

poral prediction of lattice dynamical systems,” IEEE Trans. Autom.

Control, vol. 52, no. 4, pp. 622-632, Apr. 2007.

R. Rannacher and B. Vexler, “A priori error estimates for the finite ele-

ment discretization of elliptic parameter identification problems with

pointwise measurements,” SIAM J. Control Optim., vol. 44, no. 5,

pp. 1844-1863, 2005.

H. Deng, H.-X. Li, and G. Chen, “Spectral-approximation-based intelli-

gent modeling for distributed thermal processes,” IEEE Trans. Control

Syst. Technol., vol. 13, no. 5, pp. 686-700, Sep. 2005.

B. Luo, T. Huang, H.-N. Wu, and X. Yang, “Data-driven Hso control

for nonlinear distributed parameter systems,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 26, no. 11, pp. 2949-2961, Nov. 2015.

X. Lu, T. Hu, and F. Yin, “A novel spatiotemporal fuzzy method for

modeling of complex distributed parameter processes,” IEEE Trans. Ind.

Electron., to be published. doi: 10.1109/TIE.2018.2877118.

X.-B. Meng, H.-X. Li, and H.-D. Yang, “Evolutionary design of

spatio—temporal learning model for thermal distribution in lithium-ion

batteries,” IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 2838-2848,

May 2019.

L. Peng and K. Mohseni, “Nonlinear model reduction via a locally

weighted POD method,” Int. J. Numer. Methods Eng., vol. 106, no. 5,

pp. 372-396, 2016.

M. Wang, H.-X. Li, X. Chen, and Y. Chen, “Deep learning-based model

reduction for distributed parameter systems,” IEEE Trans. Syst., Man,

Cybern., Syst., vol. 46, no. 12, pp. 1664-1674, Dec. 2016.

M. Izadi and S. Dubljevic, “Order-reduction of parabolic PDEs with

time-varying domain using empirical eigenfunctions,” AIChE J., vol. 59,

no. 11, pp. 4142-4150, 2013.

D. Amsallem, M. J. Zahr, and C. Farhat, “Nonlinear model order reduc-

tion based on local reduced-order bases,” Int. J. Numer. Methods Eng.,

vol. 92, no. 10, pp. 891-916, 2012.

M. Dihlmann, M. Drohmann, and B. Haasdonk, “Model reduction of

parametrized evolution problems using the reduced basis method with

adaptive time partitioning,” Stuttgart Res. Centre Simulat. Technol.,

Stuttgart, Germany, Rep. 2011-13, 2011.

A. Narasingam, P. Siddhamshetty, and J. S. Kwon, “Temporal clus-

tering for order reduction of nonlinear parabolic PDE systems with

time-dependent spatial domains: Application to a hydraulic fracturing

process,” AIChE J., vol. 63, no. 9, pp. 3818-3831, 2017.

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

2797

[21] S. Chaturantabut, “Temporal localized nonlinear model reduction with
a priori error estimate,” Appl. Numer. Math., vol. 119, pp. 225-238,
Sep. 2017.

S. Sahyoun and S. M. Djouadi, “Time, space, and space-time hybrid
clustering POD with application to the Burgers’ equation,” in Proc. [EEE
53rd Annu. Conf. Decis. Control, Los Angeles, CA, USA, Dec. 2014,
pp. 2088-2093.

A. Corigliano, M. Dossi, and S. Mariani, “Model order reduction
and domain decomposition strategies for the solution of the dynamic
elastic—plastic structural problem,” Comput. Methods Appl. Mech. Eng.,
vol. 290, pp. 127-155, Jun. 2015.

J. Yu and S. J. Qin, “Multimode process monitoring with Bayesian
inference-based finite Gaussian mixture models,” AIChE J., vol. 54,
no. 7, pp. 1811-1829, 2008.

J. Yu, J. Chen, and M. M. Rashid, “Multiway independent component
analysis mixture model and mutual information based fault detection and
diagnosis approach of multiphase batch processes,” AIChE J., vol. 59,
no. 8, pp. 2761-2779, 2013.

K. Peng, K. Zhang, B. You, J. Dong, and Z. Wang, “A quality-based non-
linear fault diagnosis framework focusing on industrial multimode batch
processes,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2615-2624,
Apr. 2016.

M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno, “Statistical process
monitoring based on dissimilarity of process data,” AIChE J., vol. 48,
no. 6, pp. 1231-1240, 2002.

C. Zhao, F. Wang, and M. Jia, “Dissimilarity analysis based batch pro-
cess monitoring using moving windows,” AIChE J., vol. 53, no. 5,
pp. 1267-1277, 2007.

Z. Liu and H.-X. Li, “Extreme learning machine based spatiotemporal
modeling of lithium-ion battery thermal dynamics,” J. Power Sources,
vol. 277, pp. 228-238, Mar. 2015.

P. D. Christofides, Nonlinear and Robust Control of PDE Systems:
Methods and Applications to Transport-Reaction Processes. Boston,
MA, USA: Birkhiuser, 2001.

Y.-H. Lee, H. D. Jin, and C. Han, “On-line process state classifica-
tion for adaptive monitoring,” Ind. Eng. Chem. Res., vol. 45, no. 9,
pp. 3095-3107, 2006.

X. J. Lu, W. Zou, and M. Huang, “An adaptive modeling method
for time-varying distributed parameter processes with curing process
applications,” Nonlin. Dyn., vol. 82, nos. 1-2, pp. 865-876, 2015.

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Zhi Wang (S’19) received the B.E. degree in
automation from the Department of Control and
Systems Engineering, Nanjing University, Nanjing,
China, in 2015. He is currently pursuing the Ph.D.
degree in machine learning and systems engineer-
ing with the Department of Systems Engineering
and Engineering Management, City University of
Hong Kong, Hong Kong.

His current research interests include reinforce-
ment learning, system modeling, machine learning,
and robotics.

Han-Xiong Li (S’94-M’97-SM’00-F’11) received
the B.E. degree in aerospace engineering from
the National University of Defense Technology,
Changsha, China, in 1982, the M.E. degree in
electrical engineering from the Delft University of
Technology, Delft, The Netherlands, in 1991, and
the Ph.D. degree in electrical engineering from the
University of Auckland, Auckland, New Zealand, in
1997.

He is a Professor with the Department of SEEM,
City University of Hong Kong, Hong Kong. He has
a broad experience in both academia and industry. He has authored two books
and about 20 patents, and published over 200 SCI journal papers with H-index
42 (Web of Science). His current research interests include process modeling
and control, system intelligence, distributed parameter systems, and battery
management system.

Dr. Li was a recipient of the Distinguished Young Scholar (overseas) by the
China National Science Foundation in 2004, the Chang Jiang Professorship
by the Ministry of Education, China, in 2006, and the National Professorship
in China Thousand Talents Program in 2010. He serves as an Associate Editor
for the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS:
SYSTEMS, and was an Associate Editor of the IEEE TRANSACTIONS
ON CYBERNETICS from 2002 to 2016 and IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS from 2009 to 2015. He serves as a Distinguished
Expert for Hunan Government and China Federation of Returned Overseas
Chinese.

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2021 at 03:00:55 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TII.2019.2900226
http://dx.doi.org/10.1109/TCYB.2019.2901897
http://dx.doi.org/10.1109/TSMC.2018.2810447
http://dx.doi.org/10.1109/TIE.2018.2877118


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


