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Abstract— Bayesian policy reuse (BPR) is a general policy
transfer framework for selecting a source policy from an offline
library by inferring the task belief based on some observation
signals and a trained observation model. In this article, we pro-
pose an improved BPR method to achieve more efficient policy
transfer in deep reinforcement learning (DRL). First, most BPR
algorithms use the episodic return as the observation signal that
contains limited information and cannot be obtained until the end
of an episode. Instead, we employ the state transition sample,
which is informative and instantaneous, as the observation
signal for faster and more accurate task inference. Second,
BPR algorithms usually require numerous samples to estimate
the probability distribution of the tabular-based observation
model, which may be expensive and even infeasible to learn
and maintain, especially when using the state transition sample
as the signal. Hence, we propose a scalable observation model
based on fitting state transition functions of source tasks from
only a small number of samples, which can generalize to any
signals observed in the target task. Moreover, we extend the
offline-mode BPR to the continual learning setting by expanding
the scalable observation model in a plug-and-play fashion, which
can avoid negative transfer when faced with new unknown tasks.
Experimental results show that our method can consistently
facilitate faster and more efficient policy transfer.

Index Terms— Bayesian policy reuse (BPR), continual learning,
deep reinforcement learning (DRL), observation model, transfer
learning.

NOMENCLATURE
Notation Description
s State.
a Action.
r Reward.
P Transition function.
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π Policy.
γ Discount factor.
M Maximum number of steps.
U Episode total discounted reward function.
K Number of episodes.
τ Task instance.
T Task set.
5 Policy library.
σ Observation signal.
β Belief model.
P Probability distribution.
D State transition sample dataset.
ϑ Neural network parameters.
N Gaussian function.
κ Kernel function.
δ Signal variance of the RBF.
l Characteristic length scale of the RBF.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1] is a general opti-
mization framework of how an artificial agent learns

an optimal policy to maximize the cumulative reward by
interacting with its environment. RL has been used to find
optimal controllers [2], [3], [4] and realize human–computer
interaction [5], and has a broad prospect in other practical
applications [6]. With recent advances, deep RL (DRL) has
achieved state-of-the-art performance on various tasks [7], [8],
[9], such as video games [10], board games [11], robotics [12],
autonomous driving [13], and quantum information [14]. How-
ever, DRL algorithms are usually sensitive to the choice of
hyper-parameters [15], [16] and typically require numerous
samples to converge to good policies [17], [18], which can be
computationally intensive in real-world applications.

To address this concern, transfer RL [19] is usually intro-
duced to reduce the number of samples required for learning
a target task by reusing previously acquired knowledge from
relevant source tasks [20], [21], [22]. Reusing policies are
widely investigated kind of approaches for this topic [23], [24],
[25], [26], [27], [28], since they are intuitive, direct, and do
not rely on value functions that may be difficult or unavailable
to transfer.

In this article, we focus on the problem of transferring poli-
cies from multiple source tasks in DRL. Bayesian policy reuse
(BPR) [29] is a general transfer framework for responding to
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a target task by selecting the most appropriate policy from
an offline library based on some observation signals and a
trained observation model. Moreover, BPR has been success-
fully applied to handle nonstationary opponents in multiagent
systems [30], [31], [32], [33]. However, BPR algorithms have
several limitations: 1) they usually use the episodic return as
the observation signal that is only a scalar containing limited
information, and the learning can be too slow as they must
wait until the end of a full episode before updating the task
belief; 2) they typically require numerous samples to estimate
the probability distribution of the tabular-based observation
model, which could be expensive and even infeasible to learn
and maintain, especially using the state transition sample as
the signal; and 3) they need to apply a fixed set of policies
on all source tasks to obtain the tabular observation model
in an offline manner, impeding the applicability to real-world
continual learning settings.

We address the above limitations in the article. First,
we employ the state transition sample (s, a, r, s ′), the
four-tuple composed of state, action, reward, and the next state,
as the observation signal that reveals more task information
since the state transition function P(s ′, r |s, a) completely
characterizes the task’s dynamics. Then, we use only a small
number of samples to fit the state transition functions of source
tasks, which are utilized to compute the scalable observation
model that can generalize to any signals observed in the
target task. In particular, we adopt two typical approaches,
the nonparametric Gaussian process (GP) and the parametric
neural network (NN), to estimate these functions, while in
principle any distribution matching technique or probabilistic
model can be adopted for this estimation. GP exhibits better
sample efficiency and uncertainty measurements on the predic-
tions, while NN can scale to extremely high-dimensional tasks.
Finally, although there are several BPR+ algorithms [30], [31],
[32], [33], [34] that can incorporate new models online, they
still need to retrain the observation model offline when adding
a new source policy into the library. Instead, we extend the
offline-mode BPR to continual learning settings in a truly
online manner by expanding the scalable observation model
in a plug-and-play fashion when incorporating new source
policies. Experimental results show that our method achieves
more efficient policy reuse, and realizes effective continual
learning with avoiding negative transfer.

In summary, our main contributions include: 1) employing
the state transition sample as the observation signal and
proposing a scalable observation model to achieve efficient
policy reuse in DRL compared to the basic BPR algo-
rithms [29], [30], [31], [32], [33], [34] and 2) extending
the offline BPR to continual learning in an online manner
compared to BPR+ algorithms [30], [31], [32], [33], [34],
which avoids negative transfer and realizes better applicability
to real-world applications.

The remainder of the article is organized as follows.
Section II introduces the background including preliminaries
of BPR and the related work. Section III presents our method
in detail. Section IV shows the experimentation, and Section V
presents concluding remarks and future work.

II. BACKGROUND

A. Preliminaries of BPR

BPR provides an efficient framework for an agent to per-
form well by selecting the most appropriate policy from the
policy library 5 to reuse when facing a target task. Formally,
a task τ ∈ T is defined as a Markov decision process (MDP),
and a policy π ∈ 5 outputs an appropriate action a given
the state s. Then, the return is defined as the accumulated
discounted reward U =

∑M
i=1 γ iri , which is received from

interacting with the environment under the guidance of policy
π over an episode of M steps, where ri is the instantaneous
reward, and γ is the discount factor. BPR uses an observation
model P(σ |τ, π), which is a probability distribution over the
observation signal σ ∈ 6, to describe possible results when
policy π behaves on task τ . The belief model β(T ), which
is a probability distribution over T , describes the similarity
between the target task τ0 and the source tasks T . BPR
initializes the belief model β0(T ) with a prior probability and
updates it based on the observation model and the observation
signal by using Bayes’ rule

β t (τ ) =
P(σ t
|τ,π t)β t−1(τ )∑

τ ′∈T P(σ t |τ ′,π t )β t−1(τ ′)
. (1)

To trade-off between exploration and exploitation, BPR uses
the probability of expected improvement based on the task
belief to select policies. It reuses the most potential policy π̂

in the policy library 5 by maximizing the expected utility as

π̂ = arg max
π∈5

∑
τ∈T

β(τ)

∫
U∈R

UP(U |τ, π)dU (2)

where P(U |τ, π) is the performance model, a probability
distribution over the utility U that describes how policy π

behaves on the task τ . The notations used in the article are
summarized in Nomenclature section.

B. Related Work

Knowledge transfer has received increasing attention
recently and a wide variety of methods have been studied in
the RL community [19], [35]. Lazaric et al. [36] transferred
the state transition samples from the source to the target task
by calculating the compliance (similarity) between tasks using
the Bayes theorem. Brys et al. [27] provided an inter-task
mapping based on state spaces to measure the similarity
between two tasks, and transferred the value functions using
reward shaping. Song et al. [37] transferred the value functions
by measuring the distance between the source and the target
tasks based on the expected models of the MDPs. Laroche and
Barlier [38] estimated the reward function of the target task
by reusing the experience instances of a source task. Mustafa
et al. [39] presented an assured metacognitive RL-based
autonomous control framework to learn to choose reward
functions that satisfy desired specifications and achieve signif-
icant performance across a variety of circumstances. However,
transfer methods based on value functions or samples usually
rely on well-estimated models of the MDPs or some prior
knowledge of the target task for similarity measurement, which
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leads to high computational complexity and could be infeasible
to transfer in practice.

Instead, the other kind of approach attempts to directly
transfer policies learned in source tasks, which eliminates the
requirement on the prior knowledge of the target task or the
assumed models of the MDPs. Fernández et al. [40] proposed
probabilistic policy reuse that transfers source policies to bias
the agent’s exploration strategy in the target task. Li and
Zhang [41] developed an online method of optimally selecting
source policies by formulating it as a multiarmed bandit
(MAB) problem. Li et al. [42] proposed a context-aware mul-
tipolicy reuse approach by employing the option framework to
select the most appropriate source policy according to some
contexts (e.g., a subset of states). Yang et al. [43] formulated
the multipolicy transfer as an option learning problem, which
serves as a complementary optimization objective of policy
learning in the target task. These policy reuse approaches
focus on facilitating learning the optimal policy for the target
task, other than a quick response to an unknown task or
rapid convergence of the target policy. Nevertheless, it is often
required for RL to act online and respond quickly, in terms of
rapid convergence, to novel tasks in real-world scenarios such
as applications involving interactions with humans.

Rosman et al. [29] contributed BPR to quickly select source
policies from an offline library using the Bayesian inference
based on some observation signals and a trained observation
model. BPR prefers to quickly select a pre-learned policy from
a fixed library, which does not guarantee that the appropriate
policy will be learned. Especially when the agent is faced
with new unknown tasks, it may even result in negative trans-
fer [44]. Furthermore, BPR is successfully applied to handle
nonstationary opponents in multiagent systems. Hernandez-
Leal et al. [30] proposed an extension, BPR+, to enable
online learning of new models when the learning agent
detects that the current policies are not performing optimally.
Zheng et al. [32], [34] proposed deep BPR+ by extending
BPR+ with a NN. A rectified belief model using the NN
approximator is introduced to achieve accurate policy detec-
tion, and a distilled policy network is proposed as the policy
library to store and reuse policies efficiently. Gao et al. [33]
investigated how to play with unknown opponents in bilateral
negotiation games based on deep BPR+.

In contrast to the family of BPR algorithms, we use more
informative observation signals such as the state transition
sample, and we propose a scalable observation model to
efficiently update the task belief. Although BPR+ algorithms
can incorporate new models online, they still need to retrain
the observation model in an offline manner when adding a new
source policy into the library. Instead, our scalable observation
model allows us to extend our method to continual learning
settings conveniently in a truly online manner.

III. OUR METHOD

In this section, we propose an improved BPR method
that aims at more efficient policy transfer in DRL. First,
we formulate the scalable observation model by fitting the state
transition function from limited samples. Next, we describe

in detail how to use GP and NN to estimate the observation
model. Then, we extend BPR from the conventional offline
mode to the continual learning setting, which can be estab-
lished naturally using the scalable observation model. Finally,
we present the detailed algorithm.

A. Scalable Observation Model

In general, BPR maintains an observation model from some
observation signals to update a task similarity measure, i.e.,
a belief, over source tasks for positive policy reuse. Naturally,
the choice of the observation signal is crucial, since it deter-
mines the granularity of the policy selection frequency and
the effectiveness of the policy reuse. The most widely used
observation signal in BPR is the episodic return U when fully
executing an associated policy. However, using the episodic
return as the observation signal has two weaknesses. One is
that we must wait until the end of a full episode to obtain the
signal. Some applications have very long episodes, so delaying
observing the signal until the end of the episode is too slow.
The other is that the episodic return is only a scalar that
contains limited information. For example, two policies with
large differences may receive similar episodic returns in the
same task, or one policy can also obtain similar episodic
returns in two tasks with large differences. Instead, we use
the state transition sample (s, a, r, s ′) as the observation signal,
which is supposed to reveal more task information since the
state transition function P(s ′, r |s, a) completely characterizes
the task’s dynamics.

Suppose that we have n source tasks, and we train one
source policy in each task. The observation signal could
be accrued by the agent by storing the history of all state
transition samples encountered during the execution of all n
source policies in all n source tasks. The observation model
P(σ |τ, π), in this case, is a tabular-based empirical estimate
of the expected state transition function of the MDPs, which
could be expensive and even infeasible to learn and maintain.
It requires a large amount of state transition samples to
estimate the probability distribution of the observation model,
and will encounter the “curse of dimensionality” in large or
continuous state-action spaces. Additionally, this may not gen-
eralize well, especially in cases with sparse sampling. When
encountering a new sample that has not been recorded by the
observation model, the Bayesian update of the task belief can
easily be inaccurate in the policy reuse phase. Since the per-
formance of BPR highly depends on the inference of the task
belief, a scalable approach is necessary for building the
observation model using limited state transition samples as the
signal.

To address the above challenges, we propose a scalable
observation model based on fitting the state transition func-
tions of sources tasks P j (s ′, r |s, a) from a small number of
state transition samples D j = {(s

j
i , a j

i , r j
i , s ′ ji )}

N j

i=1, where N j

is the number of samples in the j th source task. For the
convenience of expression, we denote the input and output of
this supervised learning instance of fitting the state transition
function as x = (s, a) and y = (r, s ′). Assume that we have
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learned the state transition functions of the n source tasks
as {P j (y j

|x j )}nj=1. Then, in the target task, we obtain the
observation signal, i.e., a couple of state transition samples
σ t
= {(x0

i , y0
i )}

N0
i=1, by applying a selected policy πt on

the target task, where N0 is the number of samples in the
target task. The observation model P(σ |τ, π) can be naturally
constructed using the fit task dynamics as

P(σ t
|τ j , πt ) = 5

N0
i=1P j

(
y0

i

∣∣x0
i

)
, j = 1, . . . , n. (3)

Intuitively, P j (y0
i |x

0
i ) indicates the likelihood of the learned

task dynamics P j fitting the sample (x0
i , y0

i ), or the degree of
samples in the target task τ0 resembling those in the source
task τ j . We only need to store a small number of samples to
learn the state transition functions of source tasks, which are
utilized to compute the scalable observation model that can
generalize to any signals observed in the target task.

B. Estimation of Observation Model

Since {P j }
n
j=1 are unknown, we only have access to an

estimation of the observation model in (3). To obtain an
approximation of the unknown densities, we employ two typi-
cal supervised learning approaches, the nonparametric GP [45]
and the parametric NN [46], to fit the state transition function
for each source task. These two methods are suitable for
different situations with respective advantages.

First, we adopt GP due to its sample efficiency and the
ability to provide uncertainty measurements on the predictions.
GP is a nonparametric and Bayesian approach to regression
that has been successfully adopted in many existing works
in the RL community [47], [48], [49], [50]. For example,
PILCO [48] used the GP to approximate the state transition
function, which was employed to assist the long-term planning
and policy evaluation in the context of model-based RL.

Given a test point x∗, the j th GP returns a Gaus-
sian distribution over the output’s mean, i.e., ŷ∗ ∼

N (µGP j (x∗), covGP j (x∗)), as

µGP j (x∗) = κ∗ j
(
κ j j + ε2 I

)−1
Y j

covGP j (x∗) = κ∗∗ − κ∗ j
(
κ j j + ε2 I

)−1
κ j∗ (4)

where (X j , Y j ) are the training samples {(x j
i , y j

i )}
N j

i=1 from
the j th source task, and κ is the kernel function such that
κ j j = κ(X j , X j ), κ∗ j = κ(x∗, X j ), κ j∗ = κ(X j , x∗), κ∗∗ =

κ(x∗, x∗). The most commonly used kernel function is the
Gaussian kernel, also known as the radial basis function (RBF)

κ
(
x, x ′

)
= δ2 exp

(
−

∥∥x − x ′
∥∥2

2

2l2

)
(5)

where δ and l are the hyper-parameters of the RBF kernel,
representing its signal variance and characteristic length scale.
For more commonly used kernels, please refer to [45]. Con-
sidering each sample as an independent Gaussian distribution,
the observation model in (3) can be re-arranged using the n
fit GPs {GP j }

n
j=1 as

P
(
σ t
|τ j , πt

)
= 5

N0
i=1N

(
y0

i ;µ j
(
x0

i

)
, cov j

(
x0

i

)
+ ε2

GP

)
(6)

where µ j and cov j denote µGP j and covGP j for simplicity,
and ε2

GP is a constant additional variance of the Gaussian
distribution, which is used to enhance generalization of GP.

Second, we adopt NN as another technique to fit the
state transition function since it can scale to extremely high-
dimensional problems. Having been widely investigated in
supervised learning tasks, NN can extract useful information
from very large data sets to build extremely complex models.
Naturally, we parameterize the state transition function of a
given source task as

Ŷ j = gϑ j (X j ) (7)

where gϑ j (·) is a NN parameterized by weights ϑ j , and Ŷ j is
the predicted output of the network. Each NN is trained in a
supervised learning way to minimize the loss function, e.g.,
the mean squared error (MSE), as

L(ϑ j ) = (Y j − Ŷ j )
2. (8)

With the n fit NNs, the observation model in (3) represents
each sample as an independent Gaussian distribution, such that

P
(
σ t
|τ j , πt

)
= 5

N0
i=1N

(
y0

i ; gϑ j

(
x0

i

)
, ε2

NN

)
(9)

where the preset constant ε2
NN is the variance of the Gaussian

distribution.
For the sake of simplicity, let f j (x0

i ) and ξ 2
j denote the mean

and variance of the Gaussian distribution in the observation
model, respectively. Then, we can obtain a uniform formation
for the observation models in (6) and (9) as

P
(
σ t
|τ j , πt

)
= 5

N0
i=1N

(
y0

i ; f j
(
x0

i

)
, ξ 2

j

)
, j = 1, . . . , n. (10)

With the estimated observation model, the task belief β t in
(1) can be efficiently updated using the Bayes’ rule as

β t (τ j ) =

∏N0
i=1N

(
y0

i ; f j
(
x0

i

)
, ξ 2

j

)
β t−1(τ j )∑n

j ′=1
∏N0

i=1N
(

y0
i ; f j ′

(
x0

i

)
, ξ 2

j ′

)
β t−1(τ j ′)

. (11)

C. Extension to Continual Learning

The conventional BPR algorithm is performed in an offline
manner. It has to acquire a collection of pre-learned behaviors
in advance, and also needs to apply a fixed set of policies on
all source tasks to obtain a tabular-based observation model
offline. Nevertheless, when encountering a new task, it is likely
that none of the policies in the library is suitable, which
leads to negative transfer. Although the BPR+ algorithms can
incorporate new models online, when adding a new source
policy into the library, they still need to re-estimate the
observation model by applying all source policies on the new
task and applying the new policy on all tasks. This can be a big
barrier to the practicality of the algorithm due to the expensive
and inefficient update of the observation model. Moreover,
different from the learned policies, the source tasks may be
inaccessible in the new learning process of the target task,
in which case the observation model is infeasible to update.

To achieve artificial general intelligence, RL agents should
constantly build more complex skills and scaffold their knowl-
edge about the world in a continual learning manner. In the
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article, we extend our method to the continual learning setting
such that in the policy reuse phase, the learning agent can
consult the stored library first, and either retrieve the most
suitable policy from the library or expand a new policy into
the library. When incorporating a new policy, we only need
another GP or NN to fit the state transition function of the
corresponding new source task Pn+1 using a small number
of samples from that task, independent of the policies and
fit GPs or NNs from the existing source tasks. The proposed
observation model in (10) is naturally scalable to the continual
expansion of a new source task in a plug-and-play fashion as

P
(
σ t
|τn+1, πt

)
= 5

N0
i=1N

(
y0

i ; fn+1
(
x0

i

)
, ξ 2

n+1

)
. (12)

Note that the conventional BPR also maintains a perfor-
mance model, i.e., a distribution of returns from each policy
on the source tasks, which is utilized together with the task
belief to select the most appropriate policy for reusing. As we
observe the state transition function that completely charac-
terizes the task’s dynamics, the scalable observation model is
informative to capture the task similarity effectively. We can
merely rely on the task belief in (11) to choose reuse policies,
and hence we abandon the use of the performance model for
better applicability in the continual learning setting.

D. Algorithm

Based on the above statements, we present the general form
of our method in Algorithm 1. It mainly consists of two
phases: the reuse phase that selects the most appropriate policy
from the library in Lines 2–13, and the learning phase which
expands a new optimal policy into the library in Lines 14–17.

First, the policy reuse phase is performed when facing the
target task. At update step t (the step size is N0), the agent
selects a reuse policy π t from the library {π j }

n
j=1 according

to the task belief β t−1, and receives the observation signal
σ t after applying the selected policy π t on the target task
τ0. Next, the scalable observation model P(σ t

|τ j , π
t ) in (10)

can be efficiently estimated by applying the obtained signal
σ t on the fit GPs or NNs from the source tasks, which is
used to update the task belief in (11). The two processes are
iteratively alternated within a learning episode until the goal
or the maximum number of steps is reached. At the end of
the episode, we check whether the target task is sufficiently
different from all source tasks according to the average return
Ū over k episodes. If Ū is below a preset threshold, the agent
will switch to the learning phase in subsequent episodes where
a new optimal policy πn+1 is learned for the target task using
any DRL algorithm. The obtained new policy πn+1 is expanded
into the policy library, together with the target task τ0 being
extended as a new source task τn+1. Accordingly, a new GP
or NN is generated to fit the dynamics of the new source task
using a small number of samples collected from the learning
phase. Specifically, for GP, we store a small number of samples
for the new source task to calculate the probability distribution
of the observation signals when fitting the new GP. For NN,
we need to use the collected samples to train a new NN model
to fit the state transition function for the new source task.
Finally, the agent switches back to the reuse phase for the
next policy transfer problem.

Algorithm 1 Efficient BPR With Scalable Observation
Model
Input: Source task set T , source policy library 5 and

GPs/NNs, number of episodes K , the
maximum number of steps M .

1 Initialize belief β0(T ) with a uniform distribution
2 if execute a reuse phase then
3 while episode ≤ K do
4 while step ≤ M & not reaching the goal do
5 Select a policy π t

∈ 5 based on β t−1

6 Apply π t on target task τ0 and receive
observation signal σ t

7 Estimate P(σ t
|T , π t ) in (10) by applying

σ t on source GPs or NNs
8 Update task belief β t in (11) using the

estimated P(σ t
|T , π t )

9 end
10 if a sufficiently different task is detected then
11 Switch to the learning phase
12 end
13 end
14 else if execute a learning phase then
15 Learn a new policy π0 and fit a new GP/NN for τ0
16 Expand π0 as πn+1 into the library
17 Switch to the reuse phase
18 end

Note that in some practical applications, we can empirically
choose (s, a, r) or (s, a, s ′) alone as the observation signal
for ease of use, in which case the output y of the task
dynamics function in (3) is the reward r or the next state s ′.
Furthermore, N0 determines the granularity of the policy selec-
tion frequency, in this article, we update the policy reusing
strategy every time step for better sample efficiency, i.e.,
N0 = 1. In summary, our algorithm estimates the observation
model from limited samples to realize efficient policy transfer.
Meantime, using the scalable observation model, our algorithm
can be easily extended to the continual learning setting, which
makes it more practical in real-world scenarios.

IV. EXPERIMENTS

In this section, we evaluate our method on five different
domains with increasing levels of complexity. Through these
experiments, we aim to build problem settings that are repre-
sentative of the types of transfer learning that RL agents may
encounter in real-world scenarios. Our experiments are mainly
divided into three parts.

1) First, we implement our GP-based method in three
relatively simple domains to demonstrate that it can
achieve efficient policy transfer when faced with target
tasks that are similar to source tasks. The results are
shown in Section IV-A.

2) Second, we implement our NN-based method in
two high-dimensional complex domains from MuJoCo,
to verify that our method enables efficient policy transfer
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Fig. 1. Three types of dynamic environments. (a) 2-D navigation domain, S is the start point and G is the goal point. (b) CartPole domain. (c) LunarLander
domain.

for more sophisticated tasks. The results are shown in
Section IV-B.

3) Finally, we apply our method to all domains to prove
that compared to the basic BPR algorithm, it can achieve
continual learning and thus avoid negative transfer when
faced with target tasks that are very different from the
source tasks, as shown in Section IV-C.

In Sections IV-A and IV-B, we compare our method to
three baseline approaches for transferring policies: the family
of BPR algorithms using episodic return as the observa-
tion signal [29], [34], the probabilistic policy reuse with
DRL (PR-DRL) algorithm [26], [40], [51], and the opti-
mal policy selection with DRL (OPS-DRL) algorithm [41].
In Section IV-C, we evaluate our method in comparison to the
basic BPR algorithm [29], and the settings of the BPR algo-
rithm are consistent with those in Sections IV-A and IV-B.
For a fair comparison, we make some improvements to the
baselines so that they can be directly compared with our
method. The details of the three baselines are given in the
Appendix.

All experimental results are averaged over ten trials. The
shaded area represents the 95% confidence interval for eval-
uation curves, and the standard errors are presented for
numerical results. All the algorithms are implemented with
Python 3.5 running on Ubuntu 16 with 48 Intel Xeon E5-2650
2.20 GHz CPU processors, 193-GB RAM, and an NVIDIA
Tesla GPU of 32-GB memory.

A. Results for Efficient Policy Transfer Based on GP

In the experiment of this section, we choose three represen-
tative types of dynamic environments, as shown in Fig. 1, and
the details are as follows.

1) 2-D Navigation: We first consider the navigation domain
where an agent must move to a goal position in a 2-D
surface, which is a continuous-state and continuous-action
problem. The states are the current 2-D positions and the
actions are 2-D vectors clipped to be in the range of [−1,+1].
Episodes terminate when the agent is within 0.5 of the goal
or reaches the maximum number of steps M = 100. The
reward is the negative Euclidean distance to the goal minus a
controlled cost that is positively related to the scale of actions.

We consider four source tasks, where they have the same
starting points (0, 0) and different goal positions as (10, 10),
(−9, 9), (−7,−7), and (8,−8), respectively. In this domain,
tasks only differ in reward functions. Therefore, we employ
the tuple (s, a, r ) as the observation signal to fit the GP and
estimate the scalable observation model.

2) CartPole: We next consider a classical control problem
with a continuous state space and a discrete action space,
described in [52] and implemented experiments in OpenAI
Gym [53]. The states are 4-D vectors, and the actions are two
discrete values of 0 and 1. Episodes terminate when the pole
falls or reaches the maximum number of steps M = 100.
In order to encourage the agent to balance the pole, a positive
reward of +1 is given at every step when the angle between
the pole and vertical line is smaller than a small threshold.
Otherwise, the reward is 0. The system is controlled by
applying a constant force F = 10 newtons to the cart, and
the agent can apply full force to the cart in either direction,
i.e., two possible actions. We set up two source tasks by
adding a constant force F ′ with a fixed direction on the cart.
The agent needs to balance the pole with the interference of
F ′ = 5 newtons in one source task, and with F ′ = −5 in
the other task. In this domain, the tuple (s, a, s ′) is set as the
observation signal to infer the most appropriate policy for the
target task.

3) LunarLander: We choose a relatively complex task,
the LunarLanderContinuous-v2 domain from OpenAI-Gym,
which involves landing a spacecraft safely on a lunar surface.
This is a high-dimensional continuous control problem with
sparse reward, and is representative of real-world problems
where it is considerably difficult to learn accurate dynamics.
The states are 8-D vectors. The actions are 2-D vectors clipped
to be in the range of [−1,+1], which are used to control
the powers of the main and side engines. Episodes finish if
the lander crashes or comes to rest or reaches the maximum
number of steps M = 1000. In this case, it can take a
large number of steps to reach the goal, and the reward is
significantly delayed until the end of the long episode. We set
up three source tasks that represent three typical scenarios by
applying an additional constant power with a fixed direction
on the main engine of the spacecraft. The additive powers

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanjing University. Downloaded on June 14,2023 at 05:31:04 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: EFFICIENT BPR WITH A SCALABLE OBSERVATION MODEL IN DRL 7

Fig. 2. Average return per episode of all tested methods in: (a) 2-D navigation; (b) CartPole; and (c) LunarLander.

TABLE I
AVERAGE RETURN OVER ALL EPISODES OF ALL TEST METHODS IMPLEMENTED IN THREE DOMAINS

are (0.5, 0), (−0.5, 0), and (0, 0.5), respectively. A successful
transfer agent should learn to transfer skills from the source
tasks and try to avoid the potential risk of landing the space-
craft. Here, the moon’s surface is generated randomly in each
episode, so the environmental dynamics are learned on noisy
data. To solve this problem, during the experiment, we set up
a constant random seed for the environment. In this setting,
tasks mainly differ in the state transition functions. Therefore,
we can employ the tuple (s, a, s ′) as the observation signal to
infer the task belief.

In this experiment, we select some target tasks that are
relatively close to the source tasks in each domain, which
ensures that there are suitable policies for the target tasks in
the policy library.

1) In 2-D Navigation domain, we select 12 target tasks, and
their goal positions are (10.5, 10), (10, 9.5), (−8.5, 9),
(−9, 9.5), (−6.5,−7), (−7,−7.5), (7.5,−8), (8,−7.5),
(10, 10), (−9, 9), (−7,−7), and (8,−8).

2) In CartPole domain, we select six target tasks, and their
values of the additional force F ′ are set as 4.5, 5, 5.5,
−5.5, −5, and −4.5.

3) In LunarLander domain, we select nine target tasks,
and their value of additive powers are (0.45, 0),
(−0.45, 0), (0, 0.45), (0.55, 0), (−0.55, 0), (0, 0.55),
(0.5, 0), (−0.5, 0), and (0, 0.5).

In each experiment, the number of learning episodes in the
target task, K , is set as 10, which is supposed to be sufficient
for all tested methods to converge to the most appropriate
policy with the highest return. The hyperparameters are set
as: δ = 1 and l = 2 for the RBF kernel of the GPR, and
ε2

GP = 0.1 for the Gaussian distribution of all test domains.
And in this experiment, we use vanilla policy gradient (REIN-
FORCE) [54], [55] and twin delayed deep deterministic policy

gradient (TD3) algorithm [56] to learn optimal policies for
source tasks.

We present the primary results of our GP-based method and
all baseline approaches on three relatively simple experimental
domains, and all the results are averaged over multiple target
tasks. Fig. 2 shows the average return per learning episode, and
Table I reports the numerical results in terms of average return
over all learning episodes. BPR obtains better policy transfer
performance than PR-DRL and OPS-DRL, which is supposed
to benefit from leveraging the efficiency of the Bayesian
inference framework. It is clear that our method achieves
much more efficient policy transfer in all tasks compared
to baselines. From Fig. 2(a) and (b), it is observed that the
received return of our method in the first episode is nearly
equal to that of the best policies for target tasks, since our
method can converge to the most appropriate policy using a
few steps within the first episode. In more complex domains,
our method can also achieve much better jump-start perfor-
mance compared to all baselines, as illustrated in Fig. 2(c).
Furthermore, from the numerical results in Table I, our method
generally obtains the largest average return over all learning
episodes in all domains. In addition, it can be observed from
the statistical results that our method mostly obtains smaller
confidence intervals and standard errors than the baselines.
This phenomenon indicates that our method can provide more
stable source task selection and knowledge transfer.

We also study how the number of state transition samples
(s, a, r, s ′) used for fitting the GPs affects the performance
of our method, i.e., identifying the relationship between the
sample size and the accuracy of policy detection during
the policy reuse phase in our method. We use 100, 200,
500, 1000, and 2000 samples, respectively, for fitting state
transition functions using GPs in these domains to observe
the performance of our method. Fig. 3 shows the average
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Fig. 3. Average return per episode of different sample sizes used for GPs in: (a) 2-D navigation; (b) CartPole; and (c) LunarLander.

TABLE II
AVERAGE RETURN OVER ALL EPISODES OF DIFFERENT SAMPLE SIZES USED FOR GPS IN THREE DOMAINS

Fig. 4. Two types of dynamic environments. (a) Ant-Navigation domain.
(b) Humanoid-Navigation domain.

return per learning episode, and Table II reports the numerical
results in terms of average return over all learning episodes.
In all domains, our method obtains a significant performance
improvement when the sample size goes from 100 to 200.
Then, as the sample size continues to grow, the performance
of our method is slightly improved only, and the degree of
performance improvement is decreasing. Especially in the 2-D
Navigation and CartPole domains, the performance of our
method remains roughly the same. It demonstrates that by
using only a small number of samples to fit the state transition
function, our method is capable of accurately estimating the
scalable observation model and inferring the task belief for
efficient policy transfer.

B. Results for Efficient Policy Transfer Based on NN

In the experiment of this section, we choose
two high-dimensional dynamic environments from
MuJoCo [57], as shown in Fig. 4, and the details are as
follows.

1) Ant-Navigation: The first experiment consists of a vari-
ation of the Ant-v3, which makes an ant agent reach the
specified 2-D positions. The states are 113-D vectors, and the
actions are 8-D vectors clipped to be in the range of [−1,+1].

In our experiment, the ant agent only needs to be within
0.2 of the goal from the starting point or reach the maximum
number of steps M = 100 regardless of speed. The reward
consists of three parts: the negative Euclidean distance to the
goal, a controlled cost that is positively related to the scale of
actions, and a contact cost that is positively related to the scale
of contact forces. We set up four source tasks with different
goal positions and gears on the legs of the ant agent, where the
gear is used to specify 3-D force and torque axes by scaling the
length of the actuator. The goal positions are (1, 1), (−1, 1),
(−1,−1), (1,−1), and the corresponding gears are 50, 100,
150, 200, respectively. When faced with target tasks similar to
the source ones, we need to select the most appropriate policy
from the library. To solve this problem, the tuple (s, a, r, s ′)
is used as the observation signal.

2) Humanoid-Navigation: We design the fifth experiment
to verify that our method can solve very high-dimensional
problems. We adopt a variation of the Humanoid-v3, which
makes a humanoid agent reach the specified 2-D position.
It is very challenging to solve this high-dimensional problem
with a continuous state-action space. The states are 378-D
vectors, and the actions are 17-D vectors clipped to be in
the range of [−0.4,+0.4]. In this experiment, the humanoid
agent will end the episode when it reaches the specified range
of the goal or the maximum number of steps M = 1000, or it
falls. The reward contains four parts: the negative Euclidean
distance to the goal, an alive bonus when the z-coordinate
of the agent is in the specified range, a large bonus when
the agent reaches its goal, and a control and impact cost.
We set up four source tasks where the goal positions are
(0.6, 0.6), (−0.55, 0.55), (0.5,−0.5), and (−0.45,−0.45),
and the corresponding specified ranges are 0.4, 0.35, 0.3, and
0.25, respectively. To solve this problem, we use the tuple
(s, a, r) as the observation signal.

Analogous to Section IV-A, we select some target tasks that
are relatively close to the source tasks in each domain.
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Fig. 5. Average return per episode of all tested methods in: (a) Ant-Navigation and (b) Humanoid-Navigation.

TABLE III
AVERAGE RETURN OVER ALL EPISODES OF ALL TEST METHODS IMPLEMENTED IN TWO DOMAINS

1) In Ant-Navigation domain, we select 12 target tasks,
and their goal positions and gears are (1.1, 1.1, 60),
(0.9, 0.9, 40), (1.1,−1.1, 90), (0.9,−0.9, 110),
(−1.1, 1.1, 160), (−0.9, 0.9, 140), (−1.1,−1.1, 190),
(−0.9,−0.9, 210), (1, 1, 50), (1,−1, 100), (−1, 1, 150),
and (−1,−1, 200).

2) In Humanoid-Navigation domain, we select 12 target
tasks, and their goal positions and specified
ranges are (0.55, 0.55, 0.4), (0.65, 0.65, 0.4),
(−0.5, 0.5, 0.35), (−0.6, 0.6, 0.35), (0.45,−0.45, 0.3),
(0.55,−0.55, 0.35), (−0.5,−0.5, 0.25),
(−0.4,−0.4, 0.25), (0.6, 0.6, 0.4), (−0.55, 0.55, 0.35),
(0.5,−0.5, 0.3), and (−0.45,−0.45, 0.25).

In this experiment, the number of learning episodes in the
target task, K , is set as 10. The hyper-parameters are set as:
ε2

NN = 0.1 for the Ant-Navigation domain and ε2
NN = 1 for the

Humanoid-Navigation domain. To solve complex problems,
we use the twin delayed deep deterministic policy gradient
(TD3) algorithm [56] to learn optimal policies for source tasks.

We present the primary results of our NN-based method
and all baseline methods on two complex experimental
domains, and all the results are averaged over multiple
target tasks. Fig. 5 shows the average return per learning
episode, and Table III reports the numerical results in terms
of average return over all learning episodes. BPR obtains
better policy transfer performance than PR-DRL and OPS-
DRL, and our method achieves much more efficient policy
transfer in all tasks compared to BPR. In domains with
high-dimensional, our method can also achieve much better
jump-start performance compared to all baselines, as illus-
trated in Fig. 5(a) and (b). Furthermore, from the numerical
results in Table III, our method generally obtains the largest
average return over all learning episodes in all domains.
In addition, it can be observed from the statistical results that
our method mostly obtains smaller confidence intervals and

standard errors than the baselines. This phenomenon indicates
that our method can provide more stable source task selection
and knowledge transfer in high-dimensional domains.

Moreover, we study how the number of state transition
samples (s, a, r, s ′) used for fitting the NNs affects the perfor-
mance of our method. We use 1000, 5000, 10 000, 50 000, and
100 000 samples, respectively, for fitting the state transition
functions using NNs in all domains to observe the performance
of our method. Fig. 6 shows the average return per learning
episode, and Table IV reports the numerical results in terms of
average return over all learning episodes. In all domains, as the
sample size continues to grow, the performance of our method
is improved, but the degree of performance improvement
is decreasing. When the sample size reaches 50 000, the
performance is almost optimal. It demonstrates that using the
limited number of samples to fit the state transition function,
our method based on NN is capable of accurately estimating
the scalable observation model and inferring the task belief
for efficient policy transfer.

Overall, it is verified that our method achieves a more
accurate inference of the task belief and converges more
quickly to the most appropriate policy for the target task.
Using the scalable observation model with more informative
observation signals, our method can efficiently update the
task belief and achieve better performance compared to all
baselines in all experimental domains.

C. Results for Continual Learning

In this experiment, we evaluate our method and the baseline
approach in continual learning settings where the agent is
faced with a new unknown target task that largely differs from
any of the source tasks.

1) In the 2-D Navigation domain, we select four target
tasks, and their goal positions are (0, 10), (0,−9),
(−8, 0), and (9, 0).
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Fig. 6. Average return per episode of different sample sizes used for NNs in: (a) Ant-Navigation and (b) Humanoid-Navigation.

TABLE IV
AVERAGE RETURN OVER ALL EPISODES OF DIFFERENT SAMPLE SIZES USED FOR NNS IN TWO DOMAINS

TABLE V
FINAL RECEIVED RETURNS IMPLEMENTED IN ALL DOMAINS WITH CONTINUAL LEARNING SETTINGS

2) In the CartPole domain, we select two target tasks, and
their values of the additional force F ′ are 8 and −8.

3) In the LunarLander domain, we select two target tasks,
and their value of additive powers are (0.5, 0.5) and
(−0.5, 0.5).

4) In the Ant-Navigation domain, we select four target
tasks, and their goal positions and gears are (1, 0, 50),
(−0.9, 0, 100), (0,−0.8, 150), and (0, 0.9, 200).

5) In the Humanoid-Navigation domain, we select four
target tasks, and their goal positions and specified ranges
are (0.2, 0.7, 0.3), (−0.65, 0.2, 0.3), (0.25,−0.6, 0.3),
and (0,−0.8, 0.3).

Different from the previous settings, our method is required
to learn a new policy for the target task in an online fashion,
other than selecting an existing source policy from the offline
library, when a sufficiently different target task is detected.
In this setting, we compare our method to the BPR and we
deploy the agents to some target tasks that are not close to
the source ones, and the final received returns are shown in
Table V. It is observed that BPR performs worse in the five
domains since it is unable to select an appropriate policy
from the offline library to respond to a new unknown task.
In contrast, our method can learn a new optimal policy for
the target task by expanding the source library in a continual
learning manner. In the policy reuse phase, our method can
detect the unknown tasks according to the received return,
and switch to the learning phase to learn a new optimal policy
for the target task, thus effectively avoiding negative transfer.

V. CONCLUSION AND FUTURE WORK

In the article, we proposed a general improved BPR frame-
work to implement more efficient policy transfer in DRL,
which can be implemented by any DRL algorithm, whether
they are model-based or model-free, on-policy, or off-policy.
We introduced a scalable observation model by using the
nonparametric GP or parametric NN to fit the state transition
function of source tasks in a model-based way, which achieves
more efficient policy reuse with informative and instantaneous
observation signals. GP is merited for its sample efficiency and
the ability to provide uncertainty measurements on the predic-
tions, while NN is preferred for extremely high-dimensional
tasks. Moreover, we extended our method to continual learning
settings conveniently in a plug-and-play fashion to avoid the
negative transfer.

While we use GP and NN to estimate the observation
model, our method is a general framework and can be easily
combined with any distribution matching technique or prob-
abilistic model. Thus, a potential direction for future work is
to use more powerful techniques to estimate the observation
model, such as more advanced GPs that can scale to high-
dimensional domains [58], [59], [60], [61], or Bayesian NNs.
In addition, we can also consider taking different kernel
functions for states and actions according to specific situations.
Alternatively, a potential solution is to use the return distribu-
tion of distributional RL approaches to avoid introducing any
additional models. Another direction is to improve the settings
of continual learning, for example, using policy distillation to
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Algorithm 2 Probabilistic Policy Reuse With DRL
Input: Source policy library {π j }

n
j=1, number of

episodes K , the maximum number of steps M .
1 W j ←0, the reuse gain associated with π j ,
2 V j ← 0, the number of times π j is used.
3 Temperature parameter ν and the incremental size 1ν

4 while episode ≤ K do
5 while j ≤ n do
6 p j ← ev×W j /

∑n
j ′ e

v×W j ′

7 end
8 Select the reuse policy π j according P .
9 U ← 0

10 while step ≤ M & not reaching the goal do
11 Apply π j on target task τ0 and receive the

reward rt .
12 U = U + γ trt

13 end
14 W j ←

W j×V j+U
V j+1

15 V j ← V j + 1
16 ν = ν +1ν

17 end

speed up the learning process for unknown tasks. Furthermore,
another significant and challenging direction is to provide
some theoretical guarantees for the family of BPR algorithms
such as the quantitative analysis of sample efficiency.

APPENDIX
BASELINES: BPR, PR-DRL, AND OPS-DRL

A. Bayesian Policy Reuse

The family of BRP algorithms [29], [30], [31], [32], [33],
[34] typically uses the episodic return as the observation
signal, and needs to apply all source policies on all source
tasks to estimate the tabular-based observation model in an
offline manner. However, it requires a large amount of episode
return samples to estimate the probability distribution of the
observation model. In our experiments, for better applicability,
we employ a variant of the BPR algorithms, which models the
probability distribution of the observation model as a Gaussian
distribution. For each task-policy pair (τ, π), we apply the
source policy π on the source τ , and repeat it one hundred
times. Then, we take the mean of episode returns µU , and
artificially choose an appropriate variance ε2

U . In this way,
we can obtain the observation model as P(σ | τ, π) ∼

N (µU , ε2
U ).

B. Policy Reuse with DRL

The probabilistic policy reuse algorithm [40] improves its
exploration by exploiting the source policies probabilistically.
It updates the probability depending on the reuse gains, which
are obtained concurrently during the learning process. The
original probabilistic policy reuse (PR) algorithm was imple-
mented by the Q-learning, referred to as PRQ-learning, which
can be applied to simple domains with a discrete state-action
space only. Here, we adopt a version of PRQ-learning that

Algorithm 3 Optimal Policy Selection With DRL
Input: Source policy library {π j }

n
j=1, number of

episodes K , the maximum number of steps M .
1 W j ←0, the reuse gain associated with π j ,
2 V j ← 0, the number of times π j is used.
3 while episode ≤ K do
4 Select the reuse policy π j according:

j = arg max
1≤ j≤n

(
W j +

√
2 ln(

∑n
j=1 V j+1)

V j+1

)
.

5 U ← 0
6 while step ≤ M & not reaching the goal do
7 Apply π j on target task τ0 and receive the

reward rt .
8 U = U + γ trt

9 end
10 W j ←

W j×V j+U
V j+1

11 V j ← V j + 1
12 end

builds on DRL, similar to the experimental settings in [26],
[51]. Thus, the resulting approach is called PR-DRL which
is directly comparable to our method. Algorithm 2 shows
its pseudocode, where the initial value of the temperature
parameter ν is 0, and the value of the incremental size 1ν

is 0.05.

C. Optimal Policy Selection With DRL

The optimal policy selection (OPS) algorithm [41] for-
mulates online source policy selection as a MAB problem
and augments Q-learning with policy reuse. Analogous to the
setting of PR-DRL, we adopt a version of OPS that builds on
DRL and obtain another baseline approach OPS-DRL. Note
that the original OPS algorithm initializes the reuse gains of
source policies by applying all the source policies on the target
task. For a fair comparison, we set the initial reuse gains of
source policies in the OPS-DRL as zeros. The pseudocode
is shown in Algorithm 3. Moreover, PR-DRL and OPS-DRL
learn a new policy for the target task while reusing source
policies from the policy library. For a fair comparison with our
method, we assume that the two baselines only reuse source
policies without learning a new one.
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