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   Abstract—Goal-conditioned  reinforcement  learning  (RL)  is  an
interesting extension of the traditional RL framework, where the
dynamic  environment  and  reward  sparsity  can  cause  conven-
tional  learning  algorithms  to  fail.  Reward  shaping  is  a  practical
approach  to  improving  sample  efficiency  by  embedding  human
domain  knowledge  into  the  learning  process.  Existing  reward
shaping  methods  for  goal-conditioned  RL  are  typically  built  on
distance  metrics  with  a  linear  and  isotropic  distribution,  which
may  fail  to  provide  sufficient  information  about  the  ever-chang-
ing  environment  with  high  complexity.  This  paper  proposes  a
novel  magnetic  field-based  reward  shaping  (MFRS)  method  for
goal-conditioned  RL  tasks  with  dynamic  target  and  obstacles.
Inspired  by  the  physical  properties  of  magnets,  we  consider  the
target  and  obstacles  as  permanent  magnets  and  establish  the
reward function according to the intensity values of the magnetic
field  generated by these  magnets.  The nonlinear  and anisotropic
distribution  of  the  magnetic  field  intensity  can  provide  more
accessible  and  conducive  information  about  the  optimization
landscape,  thus  introducing  a  more  sophisticated  magnetic
reward  compared  to  the  distance-based  setting.  Further,  we
transform  our  magnetic  reward  to  the  form  of  potential-based
reward  shaping  by  learning  a  secondary  potential  function  con-
currently to ensure the optimal policy invariance of our method.
Experiments  results  in  both  simulated  and  real-world  robotic
manipulation  tasks  demonstrate  that  MFRS  outperforms  rele-
vant  existing  methods  and  effectively  improves  the  sample  effi-
ciency  of  RL  algorithms  in  goal-conditioned  tasks  with  various
dynamics of the target and obstacles.
    Index Terms—Dynamic  environments,  goal-conditioned  reinforce-
ment learning, magnetic field, reward shaping.
  

I.  Introduction

R EINFORCEMENT  learning  (RL)  [1]  is  a  general  opti-
mization framework of  how an autonomous active agent

learns an optimal behavior policy that maximizes the cumula-
tive  reward  while  interacting  with  its  environment  in  a  trial-
and-error manner. Traditional RL algorithms, such as dynamic
programming [2], Monte Carlo methods [3], and temporal dif-
ference  learning  [4],  have  been  widely  applied  to  Markov
decision  processes  (MDPs)  with  discrete  state  and  action
space [5]–[8]. In recent years, with advances in deep learning,
RL combined with neural networks has led to great success in
high-dimensional applications with continuous space [9]–[13],
such as video games [14]–[16], the game of Go [17], robotics
[18], [19], and autonomous driving [20].

While RL has achieved significant success in various bench-
mark  domains,  its  deployment  in  real-world  applications  is
still  limited since the environment is  usually dynamic,  which
can cause conventional learning algorithms to fail.  Goal-con-
ditioned reinforcement learning [21]–[23] is a typical dynamic
environment setting where the agent is required to reach ever-
changing goals  that  vary for  each episode by learning a  gen-
eral  goal-conditioned  policy.  The  universal  value  function
approximator (UVFA) [22] makes it possible by letting the Q-
function depend on not only a state-action pair but also a goal.
In this paper, we treat the obstacle as an opposite type of the
goal  in  goal-conditioned  RL,  i.e., “anti-goal” that  the  agent
should avoid. Following UVFA [22], we can naturally give a
positive reward when the agent reaches the target,  a negative
one when hitting on the obstacles, and 0 otherwise. However,
the resulting sparse rewards make it  difficult  for  the agent  to
obtain  valid  information  and  lead  to  poor  sample  efficiency
[24],  [25].  Especially  in  the  dynamic  environment,  the  prob-
lem is more severe since the inherently sparse reward is con-
stantly changing over time [23].

Reward shaping [26]–[29] effectively addresses the sample
efficiency  problem  in  sparse  reward  tasks  without  changing
the original optimal policy. It adds an extra shaping reward to
the original environment reward to form a new shaped reward
that  the  agent  applies  to  update  policy,  offering  additional
dense information about the environment with human domain
knowledge.  Potential-based  reward  shaping  (PBRS)  [26]
defines  the  strict  form  of  the  shaping  reward  function  as  the
difference  between  the  potential  functions  of  the  successor
and the current state. It ensures that the optimal policy learned
from  the  shaped  reward  is  consistent  with  the  one  learned
from  the  original  reward,  also  known  as  the  optimal  policy
invariance property.

The  shaping  reward  in  existing  methods  is  typically  set
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according  to  a  distance  metric  for  goal-conditioned  RL,  e.g.,
the Euclidean distance between the agent and goal [30]. How-
ever, due to the linear and isotropic properties of the distance
metrics,  it  may  fail  to  provide  adequate  information  about  a
dynamic environment with high complexity.  Specifically,  the
derivative  of  the  linear  distance-based  shaping  reward  is  a
constant,  which  cannot  provide  higher-order  information  on
the optimization landscape. In this case, the agent only knows
“where” to go, rather than “how” to go. On the other hand, the
isotropic property also exacerbates this problem. Considering
a 2D plain with an initial state and a target, the points with the
same  Euclidean  distance  from  the  target  will  share  a  same
value of potential or shaping reward under distance-based set-
ting.  However,  the  points  between  the  initial  state  and  target
should be given higher values since the optimal policy is sup-
posed to be the steepest path from the initial state to the target.
Consequently, it is necessary to develop a more sophisticated
reward  shaping  method  that  can  provide  sufficient  and  con-
ducive information for goal-conditioned tasks.

Intuitively,  the  agent  should  be  attracted  to  the  target  and
repelled by the obstacles, which is similar to the physical phe-
nomenon  that  magnets  of  the  same  polarity  repel  each  other
while  those  of  different  polarities  attract  each  other.  Inspired
by  this,  we  propose  a  magnetic  field-based  reward  shaping
(MFRS)  method  for  goal-conditioned  RL tasks.  We consider
the  dynamic  target  and  obstacles  as  permanent  magnets,  and
build the reward function according to the intensity values of
the magnetic field generated by these magnets. The nonlinear
and anisotropic properties of the generated magnetic field pro-
vide a sophisticated reward function that carries more accessi-
ble  and  sufficient  information  about  the  optimization  land-
scape than in the distance-based setting. Besides, we use sev-
eral normalization techniques to unify the calculated values of
magnetic field intensity and prevent the value exploding prob-
lem.  Then,  we define the  form of  our  magnetic  reward func-
tion and transform it  into a potential-based one by learning a
secondary  potential  function  concurrently  to  ensure  the  opti-
mal policy invariance of our method.

In summary, our main contributions are as follows.
1) We propose a novel MFRS method for goal-conditioned

RL tasks with dynamic target and obstacles.
2) We build a 3-D simulated robotic manipulation platform

and verify the superiority of MFRS on a set of tasks with vari-
ous goal dynamics.

3)  We  apply  MFRS  to  a  physical  robot  in  the  real-world
environment and demonstrate the effectiveness of our method.

The  rest  of  this  paper  is  organized  as  follows.  Section  II
introduces  the  preliminaries  of  goal-conditioned  RL  and
related  work.  In  Section  III,  we first  present  the  overview of
MFRS, followed by specific implementations in detail and the
final  integrated  algorithm.  Simulated  experiments  on  several
robotic manipulation tasks with the dynamic target and obsta-
cles are conducted in Section IV. Section V demonstrates the
application  of  our  method  to  a  real  robot,  and  Section  VI
presents our concluding remarks.  

II.  Preliminaries and Related Work
  

A.  Goal-Conditioned Reinforcement Learning

⟨S,G,A,T ,R,γ⟩ S G
G ⊆ S A

T : S×A×S→ [0,1]
R : S×A×G→ R
γ γ ∈ (0,1]

We consider a discounted infinite-horizon goal-conditioned
Markov  decision  process  (MDP)  framework,  defined  by  a
tuple , where  is the set of states,  is the set
of  goals  which  is  the  subset  of  states ,  is  the  set  of
actions,  is the state transition probabil-
ity,  is  the  goal-conditioned  reward  func-
tion, and  is a discount factor .

s0 ∼ ρ0
g ∼ ρg ρ0 ρg

at ∼ π(·|st,g)
rt = r(st,at,g)

st+1 ∼ p(·|st,at)

We aim to learn a goal-conditioned policy that can achieve
multiple  goals  simultaneously.  Considering  a  goal-reaching
agent  interacting  with  the  environment,  in  which  every
episode starts with sampling an initial state  and a goal

,  where  and  denote  the  distribution  of  the  initial
state and goal, respectively. At every timestep t of the episode,
the  agent  selects  an  action  according  to  a  goal-conditioned
policy .  Then  it  receives  an  instant  reward

 that indicates whether the agent has reached the
goal,  and  the  next  state  is  sampled  from  the  distribution  of
state transition probability .

π∗
Formally, the objective of goal-conditioned RL is to find an

optimal policy  that maximizes the expected return, which is
defined as the discounted cumulative rewards
 

J(π) = Eg∼ρg,τ∼dπ(·|g)

 ∞∑
t=0

γtrt

 (1)

under the distribution
 

dπ(τ|g) = ρ0(s0)
∞∏

t=0

π(at |st,g)p(st+1|st,at) (2)

τ = (s0,a0, s1,a1, ...)

Qπ(s,a,g)

where  is  the  learning  episode.  Based  on
UVFA  [22],  goal-conditioned  RL  algorithms  rely  on  the
appropriate  estimation of  goal-conditioned action-value func-
tion , which describes the expected return when per-
forming action a in state s, goal g and following π after:
 

Qπ(st,at,g) = E(ri≥t ,si>t)∼E,(ai>t)∼π,g∼ρg

 ∞∑
i=t

γi−tri

 (3)

where E stands for the environment.

(st,at, st+1,rt,g)

πθ(s,g) Qϕ(s,a,g)

In  this  work,  we  follow the  standard  off-policy  actor-critic
framework [31]–[35], where a replay buffer D is used to store
the  transition  tuples  as  the  experience  for
training.  The  policy  is  referred  as  the  actor  and  the  action-
value  function  as  the  critic,  which  can  be  represented  as
parameterized  approximations  using  deep  neural  network
(DNN)  and ,  where θ and ϕ denote  the
parameters  of  the  actor-network  and  critic-network,  respec-
tively.

πθ

Actor-critic  algorithms  maximize  the  expected  return  by
alternating  between  policy  evaluation  and  policy  improve-
ment.  In  the  policy  evaluation  phase,  the  critic  estimates  the
action-value function of  the current  policy ,  and the objec-
tive  for  the  critic  is  minimizing  the  square  of  the  Bellman
error [2]
 

L(ϕ) = E(st ,at ,st+1,rt ,g)∼D
[
yt −Qϕ(st,at,g)

]2
(4)

 2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023



yt = rt +γEat+1∼πθ(·|st ,g)
[
Qϕ(st+1,at+1,g)

]
where .  In  the  policy
improvement phase, the actor is optimized by maximizing the
expected  action-value  function,  and  thus  the  objective  func-
tion can be written as
 

J(θ) = E(st ,g)∼D,at∼πθ(·|st ,g)
[
Qϕ(st,at,g)

]
. (5)

ϕ← ϕ−β∇ϕL(ϕ)
θ← θ+α∇θJ(θ)

Hereafter,  a  gradient  descent  step  and  a
gradient  ascent  step  can  be  taken  to  update
the parameters of the critic network and actor network, respec-
tively, where β and α denote the learning rates. The minimiz-
ing  and  maximizing  strategies  continue  until θ and ϕ con-
verge [18], [36].  

B.  Related Work
Goal-conditioned  RL  aims  to  learn  a  universal  policy  that

can  master  reaching  multiple  goals  simultaneously  [37].  Fol-
lowing  UVFA  [22],  the  reward  function  in  goal-conditioned
RL  is  typically  a  simple  unshaped  sparse  reward,  indicating
whether  the  agent  has  reached  the  goal.  Therefore,  the  agent
can  gain  nothing  from  the  environment  until  eventually  get-
ting into the goal region, which usually requires a large num-
ber of sampled episodes and brings about the problem of sam-
ple  inefficiency,  especially  in  complex  environments  such  as
robotic manipulation tasks.

A  straightforward  way  to  alleviate  the  sample  efficiency
problem  is  to  replace  the  reward  with  a  distance  measure
between  the  agent’s  current  state  and  goal.  References
[38]–[42]  propose  different  distance  metrics  to  provide  the
agent with an accurate and informative reward signal indicat-
ing the distance to the target. However, they cannot guarantee
that the optimal learned policy with the shaped reward will be
the  same  as  the  original  reward,  which  yields  an  additional
local  optima problem [30].  In  contrast,  our  method holds  the
property  of  optimal  policy  invariance  and  preserves  a  fully-
informative dense reward simultaneously.

For  the  local  optima problem generated  by  directly  replac-
ing  the  reward  function,  reward  shaping  is  a  popular  way  of
incorporating domain knowledge into policy learning without
changing the optimal policy. Ng et al. [26] propose the poten-
tial-based  reward  shaping  (PBRS),  which  defines  the  strict
form of shaping reward function with proof of sufficiency and
necessity  that  the  optimal  policy  remains  unchanged.
Wiewiora et al. [27] extend the input of potential  function to
state-action  pair,  allowing  the  incorporation  of  behavioral
knowledge. Devlin and Kudenko [28] introduce a time param-
eter  to  the  potential  function,  allowing  the  generalization  to
dynamic potentials. Further, Harutyunyan et al. [29] combine
the above two extensions and propose the dynamic potential-
based  advice  (DPBA)  method,  which  can  translate  arbitrary
reward  function  into  the  form  of  potential-based  shaping
reward  by  learning  a  secondary  potential  function  together
with  the  policy.  All  these  methods  hold  the  theoretical  prop-
erty of optimal policy invariance. However, they typically cal-
culate the shaping reward based on simple distance metrics in
goal-conditioned  RL,  which  may  fail  to  provide  sufficient
information  in  a  highly  complex  dynamic  environment.  In
contrast,  we  establish  our  shaping  reward  function  according
to the magnetic field intensity with nonlinear and anisotropic

distribution,  carrying  more  informative  and  conducive  infor-
mation about the optimization landscape.

For  the  local  optima problem,  apart  from the  reward  shap-
ing  methods,  learning  from demonstration  (LfD)  is  also  con-
sidered  as  an  effective  solution  that  introduces  a  human-in-
the-loop  learning  paradigm  with  expert  guidance.  Reference
[43]  proposes  a  human  guidance-based  PER  mechanism  to
improve the efficiency and performance of RL algorithm, and
an  incremental  learning-based  behavior  model  that  imitates
human demonstration to relieve the workload of human partic-
ipants.  Reference  [44]  develops  a  real-time human-guidance-
based  DRL  method  for  autonomous  driving,  in  which  an
improved  actor-critic  architecture  with  modified  policy  and
value  network  is  introduced.  On  the  other  hand,  the  local
optima problem also exists when performing gradient descent
to solve the ideal parameters in RL, especially in the field of
control  systems.  To  obtain  the  global  optimal  solution,  [45]
exploits  the  current  and some of  the  past  gradients  to  update
the  weight  vectors  in  neural  networks,  and proposes  a  multi-
gradient  recursive  (MGR)  RL  scheme,  which  can  eliminate
the local  optima problem and guarantee a  faster  convergence
than gradient  descent  methods.  Reference [46]  extends MGR
to  the  distributed  RL  to  deal  with  the  tracking  control  prob-
lem of uncertain nonlinear multi-agent systems, which further
decreases the dependence on network initialization.

Another  line  of  research  that  tackles  the  sample  efficiency
problem  due  to  sparse  reward  in  goal-conditioned  RL  is  the
hindsight relabeling strategy, which can be traced back to the
famous hindsight  experience  replay  (HER) [23].  HER makes
it  possible  to  reuse  unsuccessful  trajectories  in  the  replay
buffer by relabeling the “desired goals” with certain “achieved
goals”,  significantly  reducing  the  number  of  sampled  transi-
tions  required  for  learning  to  complete  the  tasks.  Recently,
researchers  have  been  interested  in  designing  advanced  rela-
beling methods for goal sampling to improve the performance
of HER [47]–[52]. However, HER and its variants only focus
on  achieving  the  desired  goal  but  fail  to  consider  the  obsta-
cles.  In  contrast,  our  method  can  handle  tasks  with  multiple
dynamic  obstacles  and  learn  to  reach  the  desired  goal  while
avoiding the obstacles with high effectiveness and efficiency.  

III.  Magnetic Field-Based Reward Shaping

In  this  section,  we  first  introduce  the  overview  of  MFRS
that  considers  the  target  and obstacles  as  permanent  magnets
and  exploits  the  physical  property  of  the  magnetic  field  to
build the shaping reward function for  goal-conditioned tasks.
Then,  we  illustrate  the  calculation  of  the  resulting  magnetic
field  intensity  for  different  shapes  of  permanent  magnets  in
detail  and  use  several  normalization  techniques  to  unify  the
intensity  distribution  and  prevent  the  value  exploding  prob-
lem. Finally, we define the form of our magnetic reward func-
tion and transform it  into a potential-based one by learning a
secondary  potential  function  concurrently  to  ensure  the  opti-
mal policy invariance property.  

A.  Method Overview
For  the  sample  inefficiency  problem  due  to  the  sparse

reward in  goal-conditioned RL,  reward shaping is  a  practical
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approach  to  incorporating  domain  knowledge  into  the  learn-
ing  process  without  changing  the  original  optimal  policy.
However,  existing reward shaping methods typically use dis-
tance measures with a linear and isotropic distribution to build
the shaping reward, which may fail to provide sufficient infor-
mation about the complex environments with the dynamic tar-
get and obstacles.

Therefore,  it  is  necessary  to  develop  a  more  sophisticated
reward  shaping  method  for  this  specific  kind  of  task.  For  a
goal-conditioned  RL  task  with  the  ever-changing  target  and
obstacles,  our  focus  is  to  head  toward  the  target  while  keep-
ing away from the obstacles.  Naturally,  the agent  is  attracted
by  the  target  and  repelled  by  the  obstacles,  which  is  analo-
gous  to  the  physical  phenomenon  that  magnets  of  the  same
polarity  repel  each  other  while  those  of  different  polarities
attract  each  other.  Motivated  by  this,  we  model  the  dynamic
target  and  obstacles  as  permanent  magnets  and  establish  our
shaping reward according to the intensity of the magnetic field
generated  by  these  permanent  magnets.  The  magnetic  field
with a nonlinear and anisotropic distribution can provide more
accessible  and  conducive  information  about  the  optimization
landscape,  thus  introducing  a  more  sophisticated  shaping
reward for goal-conditioned RL tasks with dynamic target and
obstacles. Fig. 1 visualizes  an  example  comparison  of  the
shaping  reward  distribution  between  the  traditional  distance-
based setting and our magnetic field-based setting.
 

(a) Distance-based setting

G G

S S

(b) Magnetic field-based setting
 
Fig. 1.     An example comparison of the shaping reward distribution between
the traditional distance-based setting and our magnetic field-based setting. S
and G are the start point and goal. Black circles indicate the obstacles in dif-
ferent sizes. Since the shaping reward is positively related to the magnetic
field intensity,  areas painted with warmer color possess a larger shaping
reward.
 

According  to  the  physical  property  of  permanent  magnets,
the  agent  will  sense  a  higher  intensity  value  in  the  magnetic
field when getting closer to the target or away from the obsta-
cles.  The  shaping  reward  varies  more  intensively  in  the  near
region  of  the  target  and  obstacles.  The  target  area  uses  a  far
larger  shaping  reward  to  facilitate  its  attraction  to  the  agent,
while  the  area  around  obstacles  will  receive  a  far  smaller
shaping reward as a “danger zone” to keep the agent at a dis-
tance.  The  nonlinearity  of  the  magnetic  field  reinforces  the
process that the agent is attracted by the target and repelled by
the obstacles. Being different from the distance-based setting,
the  derivative  of  the  magnetic  field  intensity  value  with
respect  to  the  agent’s  position  will  also  increase  when

approaching  the  target  or  moving  away  from  the  obstacles.
This  property  makes  the  shaping  reward  vary  more  inten-
sively when the agent explores the environments, especially in
the near regions around the target and obstacles, as illustrated
in Fig. 1(b).  Under  this  setting,  the  agent  can be informed of
an  extra  variation  trend  of  the  reward  function  together  with
the reward value itself. Thus it knows “how” to approach the
target  in  addition  to “where” to  go.  Therefore,  the  nonlinear
characteristic  of  the  magnetic  field  can  provide  more  useful
position  information  for  the  algorithm  to  improve  its  perfor-
mance.

For  a  goal-conditioned  RL  task,  the  optimal  policy  should
be  the  steepest  path  from  the  initial  state  to  the  target  while
avoiding  the  obstacles.  Considering  the  points  with  the  same
Euclidean  distance  to  the  target,  the  distance-based  reward
shaping  methods  assign  the  same  shaping  reward  (or  poten-
tial)  value  to  these  points  according  to  the  isotropic  distribu-
tion of the distance function. However, the points between the
initial state and the target should be preferred than the others
since they can eventually lead to a shorter path to the target. It
is intuitive and rational to assign higher values to those points,
which  can  more  explicitly  embed the  orientation  information
of  the  target  into  the  shaping  reward.  Our  magnetic  field-
based approach can realize this consideration by adjusting the
target  magnet’s  magnetization  direction  towards  the  agent’s
initial state. As shown in Fig. 1(b), the shaping reward distri-
bution of the target area is anisotropic, where the part between
the  initial  state  and  the  goal  exhibits  a  larger  value  than  the
other parts. Accordingly, the agent will have a clear insight of
the  heading  direction  towards  the  target.  In  brief,  the
anisotropic feature of the magnetic field can provide more ori-
entation information about the goal-conditioned RL tasks.

Based  on  the  above  insights,  we  propose  a  MFRS  method
for  goal-conditioned  RL  tasks,  which  can  provide  abundant
and conducive information on the position and orientation of
the  target  and  obstacle  due  to  the  nonlinear  and  anisotropic
distribution  of  the  magnetic  field.  To  this  end,  an  additional
dense  shaping  reward  according  to  the  magnetic  field  inten-
sity is added to the original sparse reward with the guarantee
of optimal policy invariance. As a result, the agent can enjoy
an informative reward signal indicating where and how far the
target  and  obstacles  are  in  each  timestep,  and  maintain  the
same optimal policy under the sparse reward condition. There-
fore,  the  sample  inefficiency  problem  caused  by  the  sparse
reward  can  be  alleviated.  We  consider  the  target  and  obsta-
cles as permanent magnets,  and calculate the intensity values
of the resulting magnetic field using physical laws.  

B.  Calculation of Magnetic Field Intensity
For  permanent  magnets  in  regular  shapes,  we  can  directly

calculate  the  intensity  function  analytically,  using  different
formulas  for  different  shapes.  We  take  the  spherical  and
cuboid permanent magnets as examples to calculate the distri-
bution  of  magnetic  field  intensity  in  three-dimensional  (3-D)
space for illustration. As for the permanent magnets in irregu-
lar  shapes,  the  intensity  distribution  of  magnetic  field  can  be
obtained  by  analog  platforms  using  physics  simulation  soft-
ware such as COMSOL [53].

We assume the spherical and cuboid magnets are both satu-
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ratedly  magnetized  along  the  positive  direction  of  the z-axis,
and Fig. 2 presents  the  magnetic  field  coordinate  systems  of
the  spherical  and  cuboid  magnets,  respectively,  for  intensity
calculation.  To obtain  the  magnetic  field  intensity  at  an arbi-
trary given point in the field of spherical and cuboid magnets,
we first need to transfer the point from the environment coor-
dinate  system to  the  magnetic  field  coordinate  system of  the
spherical and cuboid magnets. Deakin [54] has introduced the
form  of  3-D  conformal  coordinate  transformation  that  com-
bines  axes  rotation,  scale  change,  and  origin  shifts.  Analo-
gously,  our  coordinate  system  transformation  of  points  in
space is a Euclidean transformation that only consists of rota-
tion and translation, which can be defined as
 

pm
x

pm
y

pm
z

 = Rθx RθyRθz


pe

x

pe
y

pe
z

+

Tx

Ty

Tz

 (6)

pm
x , p

m
y , p

m
z pe

x, p
e
y, p

e
z

Tx Ty Tz

Rθx Rθy Rθz

where  and  are  3-D  coordinates  of  the
point  in  the  magnetic  field  coordinate  system  and  environ-
ment coordinate system, respectively. , , and  are trans-
lations  between  the  origins  of  the  two  coordinate  systems
along  the x-axis, y-axis,  and z-axis. , ,  and  are  the
rotation matrices  generated by the rotation angle of  the mag-
netic field coordinate system with respect to the environment
coordinate system around the x-axis, y-axis, and z-axis, which
can be expressed by
 

Rθx =
1 0 0
0 cosθx −sinθx
0 sinθx cosθx


Rθy =

 cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy


Rθz =

[cosθz −sinθz 0
sinθz cosθz 0

0 0 1

]
(7)

where the positive sense of rotation angle is determined by the
right-hand screw rule.
 

(a) Spherical magnet

z

x

o
o

x

y
y

Ps(xs, ys, zs)

Pc(xc, yc, zc)

(b) Cuboid magnet

z

 

Ps(xs,ys,zs) Pc(xc,yc,zc)

Fig. 2.     Magnetic field coordinate systems of the spherical and cuboid mag-
nets, in which  and  are arbitrary given points.
 

(xs,ys,zs)

Now  we  have  implemented  the  3-D  conformal  coordinate
transformation.  Then  we  will  illustrate  how  to  calculate  the
magnetic  field  intensity  of  the  points  in  the  magnetic  field
coordinate system. For the spherical permanent magnet, given
an  arbitrary  point  in  its  magnetic  field  coordinate
system, we first need to convert the point from Cartesian coor-
dinates  to  Spherical  coordinates  by  the  formulae  we  defined
below:

 

rs =

√
x2

s + y2
s + z2

s

θs = arccos
zs

rs+ ϵ

ϕs = arctan
ys

xs+ ϵ

(8)

rs θs ϕs

as

(rs, θs,ϕs)

where , , and  denote the radius, inclination, and azimuth
in  Spherical  coordinates,  respectively,  and ϵ is  a  small  con-
stant.  Let  denote  the  radius  of  the  spherical  magnet,  then
the  magnetic  field  intensity  of  the  spherical  magnet  at  given
point  can be calculated analytically as
 

Hs
x =

Ms

4π

w π
0

w 2π

0
[a3

s sin3 θ0 cosφ0(rs cosθs−as cosθ0)]

/[(r2
s +a2

s −2asrs(cosθs cosθ0

+ sinθs sinθ0 cos(φs−φ0)))3/2+ ϵ]dφ0dθ0

Hs
y =

Ms

4π

w π
0

w 2π

0
[a3

s sin3 θ0 sinφ0(rs cosθs−as cosθ0)]

/[(r2
s +a2

s −2asrs(cosθs cosθ0

+ sinθs sinθ0 cos(φs−φ0)))3/2+ ϵ]dφ0dθ0

Hs
z =

Ms

4π

w π
0

w 2π

0
[a3

s sin3 θ0(as sinθ0− rs cosθs

cos(φs−φ0))]/[(r2
s +a2

s −2asrs(cosθs cosθ0

+ sinθs sinθ0 cos(φs−φ0)))3/2+ ϵ]dφ0dθ0

Hs =

√
(Hs

x)2+ (Hs
y)2+ (Hs

z )2

(9)

Ms
Hs

x Hs
y Hs

z

Hs
(xs,ys,zs)

where  is the magnetization intensity of the spherical mag-
net. , ,  and  are the calculated intensities of the mag-
netic  field  along  the x-axis, y-axis,  and z-axis  for  a  spherical
magnet, and  is the required value of magnetic field inten-
sity for the given point  in the field of the spherical
magnet.

lc,wc,hc

(xc,yc,zc)

For the cuboid magnet, let  denote the length, width,
and height  of  the  cuboid  magnet  along the x-, y-,  and z-axis,
respectively. Then the magnetic field intensity at a given point

 can be calculated as
 

Hc
x = −

Mc

8π
[Γ(lc− xc,wc− yc,zc)+Γ(lc− xc,yc,zc)

−Γ(xc,wc− yc,zc)−Γ(xc,yc,zc)]

Hc
y = −

Mc

8π
[Γ(wc− y, lc− xc,zc)+Γ(wc− yc, xc,zc)

−Γ(yc, lc− xc,zc)−Γ(yc, xc,zc)]

Hc
z = −

Mc

8π
[Ψ(wc− yc, lc− xc,zc)+Ψ(yc, lc− xc,zc)

+Ψ(lc− xc,wc− yc,zc)+Ψ(xc,wc− yc,zc)

+Ψ(wc− yc, xc,zc)+Ψ(yc, xc,zc)

+Ψ(lc− xc,yc,zc)+Ψ(xc,yc,zc)]

Hc =

√
(Hc

x)2+ (Hc
y)2+ (Hc

z )2

(10)

Mc
Hc

x Hc
y Hc

z

where  denotes the magnetization intensities of the cuboid
magnet. , ,  and  are  the  calculated  intensities  of  the
magnetic field along the x-axis, y-axis, and z-axis for a cuboid
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Hc
(xc,yc,zc)

Γ(γ1,γ2,γ3) Ψ(φ1,φ2,φ3)

magnet,  and  is  the  required  value  of  the  magnetic  field
intensity  for  the  given  point  in  the  field  of  the
cuboid  magnet.  and  are  two  auxil-
iary functions to simplify calculations as defined by
 
Γ(γ1,γ2,γ3)= ln

 √(γ1)2+ (γ2)2+ (γ3− z0)2−γ2√
(γ1)2+ (γ2)2+ (γ3− z0)2+γ2+ ϵ

+ ϵ


∣∣∣∣∣∣∣
z0=hc

z0=0

Ψ(φ1,φ2,φ3)=arctan
φ1(φ3− z0)

φ2
√

(φ1)2+ (φ2)2+ (φ3− z0)2+ ϵ

∣∣∣∣∣∣∣
z0=hc

z0=0

.

(11)

Ms = Mc = 4π

0.02
0.1 0.4 0.05

With these analytical expressions, we are now able to obtain
the  specific  value  of  magnetic  field  intensity  at  any  given
point in the field of spherical magnet and cuboid magnet. For
simplicity, we let  as the value of magnetization
intensity  only  determines  the  magnitude  of  magnetic  field
intensity, rather than its distribution. Fig. 3 visualizes the dis-
tributions of magnetic field intensity generated by the spheri-
cal  and  cuboid  magnets  in  3-D  space,  where  the  sphere’s
radius is , the length, width, and height of the cuboid are

, , ,  respectively.  Areas  with warmer colors  have a
higher intensity value in the magnetic field. It can be observed
that the surfaces of the sphere and cuboid magnets exhibit the
highest intensity value, and the intensity decreases intensively
as the distance to the magnet increases.

Towards  the  environments  with  higher  dimensions  (e.g.,
more than three dimensions), though we cannot directly calcu-
late  the  magnetic  field  intensity  since the target/obstacles  are
not physical entities and thus can not be considered as perma-
nent magnets in the physical sense, the concept and properties
of the magnetic field can still be extended to the scenario with
a high-dimensional goal in a mathematical sense. For instance,
the  magnetic  field  intensity  of  a  spherical  permanent  magnet
along the axis of magnetization (taking the z-axis as an exam-
ple) can be calculated as below:
 

H =


2M0r3

3|z|3
ẑ, (|z| ≥ r)

− M0

3
ẑ, (|z| < r)

(12)

M0

|z|

where  is the magnetization intensity, r is the radius of the
spherical magnet, and z denotes the coordinate on the z-axis in
the  magnetic  field  coordinate  system.  As  we  can  see,  the
intensity value is inversely proportional to the third power of
the distance to the origin of magnetic field coordinate system
along  the  magnetization  axis  outside  the  magnet.  This  prop-
erty of the spherical magnets can be extended to high-dimen-
sional  goals  by  simply  replacing  with  a  distance  metric
(e.g., L2-norm) between the current state and the target state,
which  can  still  maintain  a  nonlinear  and  intensively-varying
distribution of shaping rewards that  provides sufficient  infor-
mation about the optimization landscape.  

C.  Magnetic Reward Function

MT (PT
a ) MOi (P

Oi
a ) (i = 1,2, . . . ,N)

HT HOi

Considering  a  goal-conditioned  task  with  1  target  and N
obstacles.  Let  and  denote
the functions that calculate the intensity values  and  of

PT
a POi

a

MT MO

HT HOi

the magnetic fields generated by the target magnet and obsta-
cle  magnets,  respectively,  where  and  are  the  agent’s
positions in the magnetic field coordinate system of target and
obstacle  magnets.  Taking  the  spherical  target  and  cuboid
obstacle  as  an  example,  the  intensity  functions  and 
can  be  defined  as  (9)  and (10)  in  Section  III-B,  respectively.
The  intensity  values  cannot  be  directly  combined  since  the
scales of magnetic field intensity for various magnets are dif-
ferent  using separate  ways of  calculation.  It  may amplify  the
effect  of  one  or  some  magnets  and  give  an  incorrect  reward
signal to the agent if the intensity scales of these magnets are
much larger than others. Therefore, we need to standardize the
calculated intensity values  and .

Intuitively, we use the z-score method to unify the unevenly
distributed intensity values into a standard Gaussian distribu-
tion for the target and obstacles magnets as
 

HNT =
HT −µT

σT + ϵ

HNOi
=

HOi −µOi

σOi + ϵ
(i = 1,2, . . . ,N)

(13)

µT µOiwhere ϵ is  a  small  constant,  and  denote  the  means  of
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Fig. 3.     Distributions of the magnetic field intensity in 3-D space generated
by the  spherical  and  cuboid  magnets.  Areas  painted  with  warmer  color  pos-
sess a larger intensity value of the magnetic field.
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σT σOi

DM HT
HOi

HT HOi
DM

DM

magnetic  field  intensity  for  the  target  and  obstacles  magnet,
and  and  denote the standard deviation. Unfortunately,
the actual values of the mean and standard deviation cannot be
obtained directly since the agent knows nothing about the spe-
cific intensity distribution at the beginning of training. Hence,
we turn to estimate these values by introducing an extra mag-
net  buffer  that  stores  the  calculated  intensity  values 
and . During the learning process, we concurrently update
the values of the mean and standard deviation for  and 
using  the  up-to-date  buffer ,  which  are  used  to  standard-
ize the values of calculated magnetic field intensity in the next
learning  episode.  According  to  the  law  of  large  numbers,  as
the  number  of  collected  data  in  increases,  the  estimated
values  of  the  mean  and  standard  deviation  will  converge  to
their actual values.

After  implementing the standardization of  the magnet  field
intensity, the unified intensity of the target and obstacles mag-
nets  can  be  combined  to  a  value  that  represents  the  overall
intensity  of  the  magnetic  field  generated  by  the  target  and
obstacles together, which can be expressed as
 

Hcom = HNT −
1
N

N∑
i=1

HNOi
(i = 1,2, . . . ,N). (14)

HNT
HNOi

Hcom

Recall our motivation in Section III-A, we want the agent to
be attracted by the  target  and repelled by the  obstacles  when
exploring  the  environment.  In  addition,  we  consider  that  the
target’s  attraction  has  the  exact  extent  of  the  effect  as  all
obstacles’ repulsion.  Accordingly,  we  take  the  mean  of  uni-
fied intensity values among all the obstacles in the calculation
and give a positive value to  while a negative value to the
mean of  to define the combined intensity value .

Hcom

[−1,1]
Rm

Due to  the  physical  property  of  magnets,  the  intensity  val-
ues  will  be  tremendous  in  the  near  region  of  the  target,  as
shown  in Fig. 1.  Therefore,  regarding  as  the  magnetic
reward could probably lead to a phenomenon that the value of
the  magnetic  reward  is  orders  of  magnitude  larger  than  the
original  reward.  To address the value exploding problem, we
employ  the  Softsign  function  to  normalize  the  combined
intensity value within a bounded range of  and use the
output of the Softsign function as the magnetic reward 
 

Rm = Softsign(Hcom) =
Hcom

1+ | Hcom |
. (15)

Algorithm 1 Magnetic Reward Function

Input: state s; goal g;
MT ,MOi　　　intensity calculation functions ;

µT ,σT ,µOi ,σOi (i = 1,2, . . . ,N)　　　
HT ,HOiOutput: magnetic field intensity ;

Rm　　　magnetic reward 
Pa1 Obtain agent’s position  according to s

PT POi2 Obtain  target’s  position  and  obstacles’ positions  accord-
ing to g

Pa PT
a ,P

Oi
a PT ,POi3 Transfer  to  using (6) according to 

HT ←MT (PT
a ),HOi ←MOi (P

Oi
a )4 

HNT HNOi
µT ,σT ,µOi ,σOi5 Calculate  and  using (13) according to 

Hcom6 Calculate  using (14)
Rm← Softsign(Hcom)7 

g := [PT ,PO1 ,
PO2 , . . . ,PON ] PT PO1 ,
PO2 , . . . ,PON

Algorithm 1 shows the calculation process of  the magnetic
reward  function  in  our  method.  Since  we consider  the  obsta-
cles as a part of the goal in goal-conditioned RL together with
the  target,  we  define  the  goal  in  our  setting  as 

,  where  is  the  target’s  position  and 
 are obstacles’ positions.  

D.  Magnetic Field-Based Reward Shaping
Rm

Rm

F(s,a, s) = γΦ(s)−Φ(s)

Φ(·)
γ ∈ [0,1]

Rm

F ≈ Rm

After calculating the magnetic reward  that represents the
overall  intensity  generated  by  the  target  and  obstacles  mag-
nets with normalization techniques,  we need to guarantee the
optimal policy invariance of our method when using  as the
shaping reward.  PBRS [26] defines the shaping reward func-
tion as  with  proof  of  sufficiency and
necessity  that  the  optimal  policy  remains  unchanged,  where

 denotes  the  potential  function  carrying  human  domain
knowledge, and  is the discount factor. In this paper,
we employ the DPBA [29] method to transform our magnetic
reward  into the form of potential-based reward shaping in
the  goal-conditioned  RL  setting.  To  be  specific,  we  need  to
achieve ,  where  the  potential  function  in F can  be
learned in an on-policy way [55]  with a  technique analogous
to SARSA [56]
 

Φt+1(s,a,g)← Φt(s,a,g)+ηδΦt (16)

δΦt

where η is  the  learning  rate  of  this  secondary  goal-condi-
tioned potential  function Φ, and  denotes the temporal  dif-
ference (TD) error of the state transition
 

δΦt = rΦt +γΦt(st+1,at+1,g)−Φt(st,at,g) (17)
at+1

RΦ

RΦ = −Rm rΦt = −rm
t

where  is  chosen  using  the  current  policy.  According  to
DPBA [29], the value of  equals the negation of the expert-
provided reward function, which is the magnetic reward in our
method: , and thus .

Algorithm 2 MFRS for Goal-Conditioned RL

Φψ DR DM
A

Input: potential function ; replay buffer ; magnet buffer ;
number of obstacles N; discount factor γ; off-policy RL algorithm 

π∗θOutput: optimal goal-conditioned policy 
πθ Φψ← 01 Initialize  arbitrarily, 

DR DM2 Initialize replay buffer  and magnet buffer 
µT ,µOi ← 0 σT ,σOi ← 1 (i = 1,2, . . . ,N)3 ; 

4 for episode = 1, E do
s05 　　Sample an initial state  and a goal g

6 　　for t = 0, H - 1 do
at ← πθ(st ,g)7 　　　　

at st+1 rt8 　　　　Execute , observe  and 
HT ,HOi rm

t

st+1,g µT ,σT ,µOi ,σOi

9 　　　　Calculate  and  using  Algorithm  1  according
to  and 

HT ,HOi DM10 　　　　Store  in 
at+1← πθ(st+1,g)11 　　　　

12 　　　　Update ψ using (19)
ft13 　　　　Calculate  using (20)

r′t ← rt + ft14 　　　　

(st ,at , st+1,r′t ,g) DR15 　　　　Store transition  in 
16 　　end

πθ A17 　　Update  using 
µT ← mean(HT ),σT ← std(HT )18 　　

µOi ← mean(HOi ),σOi ← std(HOi )19 　　

20 end
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Φψ(s,a,g)

Since we focus on the tasks with continuous state and action
space, the goal-conditioned potential function can be parame-
terized  using  a  deep  neural  network  with  the
weights ψ.  Akin  to  the  temporal-difference  learning,  we  use
the  Bellman  error  as  the  loss  function  of  this  potential  net-
work as
 

LΦ =
1
2

(
(−rm

t +γΦψ(st+1,at+1,g)−Φψ(st,at,g)
)2
. (18)

Φψ(s,a,g)Hereafter,  the  weights  of  can  be  updated  using
the gradient descent as
 

ψ← ψ−η∇ψLΦ. (19)
As  the  secondary  goal-conditioned  potential  function  Φ  is

updated every timestep, the potential-based shaping reward F
at each timestep can be expressed as
 

ft = γΦt+1(st+1,at+1,g)−Φt(st,at,g). (20)

Rm

Algorithm  2  presents  the  integrated  process  of  MFRS  for
goal-conditioned RL. Next, we give a theoretical guarantee of
optimal  policy  invariance  in  the  goal-conditioned  RL  setting
of  our  method  in  the  Appendix,  and  a  convergence  analysis
that the expectation of shaping reward F will  be equal to our
magnetic  reward  when  the  goal-conditioned  potential
function Φ has converged in Theorem 1 below.

T
RΦ Rm

Rm

Theorem  1: Let  Φ  be  the  goal-conditioned  potential  func-
tion updated by (16) with the state transition matrix , where

 equals the negation of our magnetic reward . Then, the
expectation  of  shaping  reward F expressed  in  (20)  will  be
equal to  when Φ has converged.

Φ∗

Proof: The  goal-conditioned  potential  function  Φ  follows
the update rule of the Bellman Equation [2], which enjoys the
same  recursive  relation  when  the  potential  value  has  con-
verged to the TD-fixpoint . Thus, we have
 

Φ∗(s,a,g) = RΦ(s,a,g)+γE[Φ∗(s,a′,g)]

= −Rm(s,a,g)+γE[Φ∗(s,a′,g)]. (21)

Φ∗
According  to  (20),  we  have  the  shaping  reward F with

respect to the converged potential value 
 

F(s,a, s,a′,g) = γΦ∗(s,a′,g)−Φ∗(s,a,g)

= γΦ∗(s,a′,g)+Rm(s,a,g)

−γE[Φ∗(s,a′,g)]

= Rm(s,a,g)+γ(Φ∗(s,a′,g)

−E[Φ∗(s,a′,g)]). (22)
F (s,a,g)

T
To  obtain  the  expected  shaping  reward ,  we  take

the expectation with respect to the state transition matrix 
 

F (s,a,g) = E[F(s,a, s,a′,g)]

= Rm(s,a,g)+γE
[
Φ∗(s,a′,g)−E[Φ∗(s,a′,g)]

]
= Rm(s,a,g). (23)

Rm
Hence, the expectation of shaping reward F will be equal to

our  magnetic  reward  when the  goal-conditioned potential
function Φ converges to the TD-fixpoint. ■  

IV.  Simulation Experiments

To evaluate  our  method,  we  build  a  3-D simulated  robotic

manipulation  platform  based  on  the  software  CoppeliaSim,
formerly known as V-REP [57], and design a set of challeng-
ing  goal-conditioned  RL  tasks  with  continuous  state-action
space.  Being  analogous  to  the  FetchReach-v1  [58]  task  in
OpenAI  Gym  [59],  our  tasks  require  the  agent  to  move  the
end-effector  of  a  robotic  arm  to  dynamic  targets  with  differ-
ent  positions,  but  differ  from  FetchReach-v1  in  additional
dynamic obstacles that the agent should avoid.  

A.  Environment Settings
Sections  IV-B  and  IV-C  present  the  results  and  insightful

analysis  of  our  findings.  In  the  experiments,  we  evaluate
MFRS in comparison to several baseline methods as follows:

1) No Shaping (NS): As the basic sparse reward condition, it
trains  the  policy  with  the  original  reward  given  by  the  envi-
ronment without shaping.

F = γΦ(s,g)−Φ(s,g)
Φ(s,g) =

−d(pa, pg)+ 1
N
∑N

i=1 d(pa, poi )

2)  PBRS  [26]: It  adds  a  calculated  shaping  reward
 to the original reward, where the poten-

tial  function  is  built  on  Euclidean  distance  as 
.

F =
γΦt′ (s,a′,g)−Φt(s,a,g) ≈ R†

R† = −d(pa, pg)+ 1
N
∑N

i=1 d(pa, poi )

3)  DPBA  [29]: It  adds  a  learned  shaping  reward 
 to the original reward, where the

objective  reward  function  is  built  on  Euclidean  distance  as
.

4) HER [23]: As the famous relabeling strategy in goal-con-
ditioned RL,  it  relabels  the desired goals  in  the replay buffer
with the achieved goals in the same trajectories. In our experi-
ments,  we  adopt  the  default “final” strategy  in  HER  that
chooses the additional goals corresponding to the final state of
the environment.

g
d(s,g)

5) Sibling Rivalry (SR) [30]: It samples two sibling episodes
for  each  goal  simultaneously  and  uses  each  others’ achieved
goals as anti-goals .  Then, it  engineers an additional reward
bonus  to  encourage  exploring  and  avoid  local  optima,
where d is the Euclidean distance.

6)  Adversarial  Intrinsic  Motivation  (AIM)  [42]: It  aims  to
learn a goal-conditioned policy whose state visitation distribu-
tion  minimizes  the  Wasserstein  distance  to  a  target  distribu-
tion for a given goal, and utilizes the Wasserstein distance to
formulate  a  shaped  reward  function,  resulting  in  a  nonlinear
reward shaping mechanism.

J1 J2 J3

[−90◦,90◦], [0◦,85◦], [−10◦,90◦]

[−1◦,1◦]

We  use  Dobot  Magician  [60]  as  the  learning  agent  in  our
experiments,  which  is  a  3-degree  of  freedom  (DOF)  robotic
arm  in  both  CoppeliaSim  simulated  environment  and  real-
world industrial  applications.  Dobot Magician has three step-
per motors to actuate its joints , , and , as shown in Fig. 4,
which  can  achieve  rotation  angles  within  the  range  of

,  respectively.  Therefore,  we
consider the action as a 3-dimensional vector clipped to be in
the  range  of ,  representing  the  rotation  velocity  of
these  three  joints.  Being  analogous  to  FetchReach-v1,  the
observations  include  the  Cartesian  positions  of  the “elbow”,
“finger”, and the rotation angles of the three joints.

In  our  experiment,  we use  deep deterministic  policy  gradi-
ent  (DDPG)  [61]  as  the  base  algorithm  to  evaluate  all  the
investigated  methods  under  the  same  configurations  in  the
goal-conditioned  RL  setting.  Specifically,  the  goal-condi-
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α = 3×10−4

β = 10−3

τ = 0.001

106

γ = 0.99 N(0,0.4)

η = 10−4

106

ϵ = 10−7

tioned  policy  is  approximated  by  a  neural  network  with  two
256-unit hidden layers separated by ReLU nonlinearity as the
actor, which maps each state and goal to a deterministic action
and  updates  its  weights  using  Adam  optimizer  [62]  with  a
learning  rate  of .  The  goal-conditioned  Q-func-
tion is also approximated by a neural network that maps each
state-action pair and goal to a certain value as the critic, which
has the same network structure and optimizer as the actor with
a  learning  rate  of .  The  target  networks  of  actor  and
critic update their weights by slowly tracking the learned actor
and  critic  with .  We  train  the  DDPG  whenever  an
episode terminates with a minibatch size of 128 for 100 itera-
tions.  In  addition,  we  use  a  replay  buffer  size  of ,  a  dis-
count  factor  of ,  and  a  Gaussian  noise  to
each  action  for  exploration.  For  MFRS  and  DPBA  methods,
the goal-conditioned potential  function Φ is  approximated by
a neural network with the same structure and optimizer as the
critic  network  and  a  learning  rate  of ,  which  is
updated for each timestep in an on-policy manner. For MFRS
in  particular,  we  set  the  magnet  buffer  size  of  and  the
small constant of .

1
E
∑E

k=1 Tk

Tk

For  each  report  unit,  we  define  two  performance  metrics.
One  is  the  success  rate  in  each  learning  episode,  where  suc-
cess is defined as the agent reaching the target without hitting
on  the  obstacles.  The  other  is  the  average  timesteps  for  each
trajectory  over  all  learning  episodes,  defined  as ,
where E is the number of learning episodes and  is the ter-
minal timestep in the kth episode. The former is plotted in fig-
ures, and the latter is presented in tables. Moreover, due to the
randomness  in  the  update  process  of  the  neural  network,  we
repeat  five  runs  for  each  policy  training  by  taking  different
random seeds for all  methods, and report the mean regarding
the performance metrics. Our code is available online1.  

B.  Primary Results
To  evaluate  our  method  in  different  scenarios,  we  develop

four goal-conditioned tasks with various dynamics configura-
tions  of  the  target  and  obstacles,  on  which  we  implement
MFRS and baseline methods. All four tasks require the agent

r(s,a,g) = 100
r(s,a,g) = −10

r(s,a,g) = −1

H = 1000

to  move  the “finger” into  a  target  region  without  hitting  the
obstacles in each episode. Accordingly, we define the original
reward function as:  if the “finger” successfully
reaches  the  target,  if  the  agent  hits  the  obsta-
cle or the floor in CopperliaSim, and  otherwise.
Each episode starts by sampling the positions of the target and
obstacles  with  the  rotation  angles  of  the  agent’s  three  joints
reset  to  zero,  and  terminates  whenever  the  agent  reaches  the
target or at the horizon of .

0.1 0.4 0.05

0.04 0.13

0.02
0.04 0.06

1) Goal-Conditioned Tasks With Different Goal Dynamics:
In the first  two tasks,  the obstacle  is  a  cuboid rotator  revolv-
ing  around  a  fixed  cylindrical  pedestal,  where  the  length,
width, and height of the rotator are , ,  along the x-
axis, y-axis, z-axis,  and  the  radius,  height  of  the  pedestal  are

, ,  respectively.  The rotator’s axis coincides with the
pedestal’s axis, and the top surfaces of the rotator and pedestal
are on the same plane.  We represent  the obstacle position by
the  center  point  coordinate  of  the  rotator  determined  by  its
rotation  angle  from  an  initial  position,  where  the  positive
direction  of  rotation  is  defined  to  be  anticlockwise,  with  the
rotator’s  initial  position  being  parallel  to  the y-axis.  In  the
other two tasks with higher complexity, the agent has to han-
dle  three  dynamic  spherical  obstacles  with  a  radius  of ,

, and , respectively. We represent the obstacles’ posi-
tions  by  the  center  point  coordinates  of  their  own  spheres.
Besides, the target is a sphere with a radius of 0.02 in all four
tasks where the target position is the center point coordinate.

i) Task I: As shown in Fig. 5(a), the dynamic of the goal is
determined by randomly changing the target position, which is
sampled uniformly from the space both in the reachable area
of “finger” and below but  not  under  the lower surface of  the
single static obstacle.

[−60◦,60◦]

ii) Task II: As shown in Fig. 5(b),  the dynamic goal is cre-
ated by changing the positions for both the target and the sin-
gle  obstacle.  The  change  of  obstacle  position  can  be  con-
verted  into  sampling  rotation  angles  of  the  rotator,  which  is
defined as a uniform sampling within . The change
of target position is consistent with the one in Task I.

iii) Task  III: As  shown  in Fig. 5(c),  the  goal  dynamics  is
determined  by  changing  the  positions  of  multiple  obstacles
while  holding the  target  still,  and all  the  target  and obstacles
are ensured to be not intersectant.

iv) Task  IV: As  shown  in Fig. 5(d),  this  kind  of  dynamic
goal is created by sampling the positions of all the target and
multiple  obstacles  simultaneously,  which  is  considered  the
most complex of the four tasks. Also, we need to ensure that
all the target and obstacles are not intersectant.

2) Results of MFRS: We present the experimental results of
MFRS and all baselines implemented on the four goal-condi-
tioned  tasks. Fig. 6 shows  the  success  rate  in  each  learning
episode,  of  which the  mean across  five  runs  is  plotted as  the
bold  line  with  90% bootstrapped  confidence  intervals  of  the
mean  painted  in  the  shade. Table I reports  the  numerical
results  in  terms  of  average  timesteps  over 10  000 learning
episodes  of  all  tested  methods.  The  mean  across  five  runs  is
presented,  and  the  confidence  intervals  are  corresponding
standard errors. The best performance is marked in boldface.

Surprisingly, HER obtains the worst performance and even

 

J1

J3

J2

x
y
z

Elbow

Shoulder

Finger

Base

 

J1 J2 J3

Fig. 4.     The  configuration  of  Dobot  Magician,  where “base”, “shoulder”,
and “elbow” represent three motors with the joints denoted by , , and ,
respectively, and “finger” represents the end-effector.
 

  
1 https://github.com/Darkness-hy/mfrs
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gets a lower success rate than NS. We conjecture that the rela-
beling strategy may mislabel the obstacles as the targets when
considering the obstacles as a part of the goal. PBRS achieves
a  slightly  higher  success  rate  than  NS  since  it  incorporates
additional  distance  information  into  the  potential  function.
DPBA obtains better performance than PBRS, indicating that
directly  encoding  the  distance  information  as  the  shaping
reward  and learning  a  potential  function  in  turn  can  be  more
informative and efficient. AIM has similar performance com-

pared to DPBA and performs better in complex tasks (Tasks II
and  IV),  which  is  supposed  to  benefit  from  the  estimated
Wasserstein-1  distance  between  the  state  visitation  distribu-
tion and target distribution. SR performs best among the base-
line  methods  on  account  of  its  anti-goals  mechanism  that
encourages exploring and avoids local optima, while it suffers
from  large  confidence  intervals  since  SR  fails  to  consider
obstacles and can not guarantee the optimal policy invariance
property.

 

TABLE I 

Numerical Results in Terms of Average Timesteps Over All Learning Episodes of Tested
Methods in Four Different Goal-Conditioned Tasks

Task Task I Task II Task III Task IV

NS 939.9±12.7 970.0±4.0 982.8±9.0 990.9±0.9

PBRS 933.1±9.9 952.1±2.7 902.8±29.4 989.9±0.4

DPBA 785.3±31.0 916.5±83.6 660.7±86.3 972.7±1.7

HER 993.4±4.8 999.0±106.2 1000.0± 0.0 998.6±0.5

SR 684.3±78.3 842.0±78.9 524.5± 111.2 962.9±9.5

AIM 807.8±7.5 859.9±9.4 731.6± 17.7 960.1±1.9

MFRS 513.1±46.4 760.8±62.0 380.5±18.7 948.6±4.3
 

 

(a) Task I: the target is dynamic while the single obstacle is not. (b) Task II: both the target and single obstacle are dynamic.

(c) Task III: the multiple obstacles are dynamic while the target is not. (d) Task IV: both the target and multiple obstacles are dynamic.

x

y
z

x

y
z

x

y
z

x

y
z

x

y
z

x

y
z

x

y
z

x

y
z

 
Fig. 5.     Examples of four goal-conditioned tasks with different dynamics of the target and obstacles. The spherical targets in all the tasks are shown in yellow,
the single cuboid obstacles in Tasks I and II are shown in white, and the multiple spherical obstacles in Tasks III and IV with various sizes are shown in black.
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Fig. 6.     Success rate in each learning episode of all investigated methods implemented on four different goal-conditioned tasks.
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79.66%

61.32% 29.91%

100.38% 52.85%
18.59%

In contrast,  it  can be observed from Fig. 6 that  MFRS out-
performs  all  the  baseline  methods  with  a  considerably  larger
success rate in all the four tasks, which is supposed to benefit
from the explicit and informative optimization landscape pro-
vided by the magnetic field intensity. The performance gap in
terms of success rate at the end of training varies in different
tasks. For instance, in Task I, MFRS achieves a success rate of

 at  the  last  learning  episode  while  the  baseline  meth-
ods  have  only  increased  the  success  rate  to  no  more  than

,  which  is  improved  performance  at  least.
Likewise,  the  performance  in  terms  of  success  rate  is
improved  by  in  Task  II,  in  Task  III  and

 in  Task  IV.  In  addition,  being  different  from  the
research  efforts  on  goal-conditioned  RL,  our  method  aims  at
using  reward  shaping  method  to  solve  sparse  reward  prob-
lems for  goal-conditioned RL,  which is  capable  of  extending
the  goal  setting  to  not  only  dynamic  target  but  also  dynamic
obstacles  while  holding  the  optimal  policy  invariance  prop-
erty at  the same time.  Moreover,  from the large performance
gap in terms of success rate between MFRS and AIM, we can
deduce that MFRS has the potential to maintain the superior-
ity over other nonlinear reward shaping mechanisms.

513.1

939.9
45.4%

21.6% 61.3%
4.3%

From Table I, it can be obtained that MFRS achieves signif-
icantly  smaller  average  timesteps  over 10  000 learning  epi-
sodes than all the baselines in all the tasks, which means fewer
sampled transitions will be required for the agent to learn the
policy.  Specifically,  in  Task  I,  MFRS  achieves  time-
steps  in  average  over  all  learning  episodes  while  the  NS
method  acquires  timesteps.  It  indicates  that  MFRS
obtains  a  reduction  of  sampling  transitions.  The  decr-
ease of timesteps is  in Task II,  in Task III, and

 in  Task  IV.  Hence,  our  method  successfully  improves
the sample efficiency of RL in the goal-conditioned setting. In
summary, being consistent with the statement in Section III-A,
it is verified that MFRS is able to provide sufficient and con-
ducive information about the complex environments with var-
ious  dynamics  of  the  target  and  obstacles,  achieving  signifi-
cant performance for addressing the sparse reward problem in
different scenarios.  

C.  Ablation Study
To  figure  out  how  the  three  critical  components  of  our

method affect the performance respectively, we perform addi-
tional  ablation  studies  using  a  control  variables  approach  to
separate  each  process  apart  as  the  following  variants  of
MFRS.

1) Without MF (Magnetic Field): The shaping reward is cal-

culated  based  on  Euclidean  distance,  instead  of  the  magnetic
field,  with  normalization  techniques  and  converted  into  the
form of potential-based reward shaping.

2)  Without  NT  (Normalization  Techniques): The  shaping
reward is calculated based on the magnetic field without nor-
malization  techniques  and  directly  converted  into  the  poten-
tial-based form.

3)  Without  SRT  (Shaping  Reward  Transformation): The
shaping  reward  directly  follows  the  form  of  potential-based
reward shaping, with the potential value calculated according
to the magnetic field with normalization techniques.

The  learning  performance  in  terms of  success  rate  per  epi-
sode of the three variants as well as MFRS is shown in Fig. 7.

80%

First  and  foremost,  the  variant without  MF is  compared  to
MFRS  to  identify  how  magnetic  field-based  shaping  reward
improves the sample efficiency against distance-based setting.
We  can  observe  that  MFRS  outperforms  the  variant without
MF with a considerably larger success rate per episode in all
four  tasks.  Specifically,  in  Task III,  it  takes  the  variant with-
out  MF 15  000 episodes  to  achieve  a  success  rate  of  around

, while MFRS only needs 8000 episodes to do that. It ver-
ifies  that  magnetic  field-based shaping reward is  able  to  pro-
vide  a  more  explicit  and  informative  optimization  landscape
for policy learning than the distance-based setting. It is consis-
tent  with  the  statement  in  Section  I  that  the  nonlinear  and
anisotropic properties of the generated magnetic field provide
a  sophisticated  reward  function  that  carries  more  accessible
and  sufficient  information  about  the  optimization  landscape,
thus  resulting  in  a  sample-efficient  method  for  goal-condi-
tioned RL.

Next,  the variant without NT is  compared to MFRS to ver-
ify  the  effectiveness  of  normalization  techniques.  Obviously,
when taking no account  of  any normalization in  our  method,
the  algorithm  performs  terribly  in  all  four  tasks,  which  is
worse  as  the  task  gets  more  complex.  It  verifies  the  assump-
tion in Section III-C that if the intensity scales of some mag-
nets are much larger than others, it may amplify the effect of
these  magnets  and  give  an  incorrect  reward  signal  to  the
agent. On the other hand, the tremendous intensity value in the
very  near  region  of  the  target  will  also  exacerbate  this  prob-
lem by inducing the agent to slow down the steps to the target,
so  that  it  can  obtain  higher  cumulative  rewards  than  directly
arriving at the target and terminating the episode.

Finally,  the  variant without  SRT is  compared  to  MFRS for
verifying the contribution of Shaping Reward Transformation
to  the  performance  of  our  method.  From Fig. 7,  it  can  be
observed that MFRS outperforms the variant without SRT with
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Fig. 7.     Success rate in each learning episode of the three variants together with MFRS implemented on four different goal-conditioned tasks.
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improved performance in terms of success rate per episode to
some extent, and the performance gap is increasing along the
learning  process,  especially  in  complex  tasks.  It  verifies  that
the  magnetic  reward  is  more  informative  and  effective  when
approximated  by  the  potential-based  shaping  reward  instead
of being regarded as the potential function for the guarantee of
optimal  policy  invariance.  On the  other  hand,  one may alter-
natively select this simplified form of the without SRT variant
to  achieve  similar  effects  of  MFRS,  which  avoids  learning  a
secondary potential function at the cost of some performance
loss in practice.  

V.  Application to Real Robot

To  further  demonstrate  the  effectiveness  of  our  method  in
the  real-world  environment,  we  evaluate  the  performance  of
MFRS  and  baselines  on  a  physical  Dobot  Magician  robotic
arm.  The  robot  integrates  a  low-level  controller  to  move  the
stepper  motor  of  each  joint  and  provides  a  dynamic  link
library  (DLL)  for  the  user  to  measure  and  manipulate  the
robot’s state, including the joint angles and the position of the
end-effector.  Due  to  the  cost  of  training  on  a  physical  robot,
we first train the policies in simulation and deploy them on a
real  robot  without  any  finetuning.  The  video  is  available
online2.  

A.  Training in Simulation

0.03 0.045 0.02
0.038 0.047

0.12

From  the  real-world  scenario,  we  consider  a  goal-condi-
tioned task with a dynamic target and a dynamic obstacle,  as
shown in Fig. 8(b), and build the same simulated environment
accordingly  using  CoppeliaSim  as  shown  in Fig. 8(a).  Both
the target  and obstacle are in the shape of cuboid.  The target
cuboid  has  the  length,  width,  and  height  of , , 
along the x-axis, y-axis, z-axis in simulation, and , ,

 for  obstacle  cuboid,  respectively.  The  dynamic  of  the
goal is generated by randomly changing the positions of both
the target  and obstacle in each episode,  which are ensured to
be  not  intersectant.  The  observations,  actions,  and  reward
function are consistent with the ones in Section IV, and all the
hyper-parameters  are  set  to  be  the  same  as  those  in  Section
IV-C.

5 90%

We  present  the  success  rate  of  MFRS  and  all  the  baseline
methods training on the real-world task in Fig. 9, of which the
mean across  runs is plotted as the bold line with  boot-
strapped  confidence  intervals  of  the  mean  painted  in  the
shade.  Being consistent  with  the  experimental  results  in  Sec-
tion  IV-B,  MFRS outperforms  all  other  baselines  with  a  sig-
nificantly larger success rate on the real-world task in simula-
tion.  

B.  Validation in the Real-World

20

To  figure  out  whether  MFRS  performs  well  and  beats  the
baseline  methods  on  the  real  robot,  we  evaluate  the  success
rate  and  average  timesteps  over  different  testing  episodes
for each run of each method in the training phase, in which the
positions  of  the  dynamic  target  and  obstacle  are  randomly

100
generated and set accordingly. That is, for each involved algo-
rithm in real-world experiments,  we have conducted  ran-
dom testing episodes  with  different  settings  of  the  target  and
obstacle in total.

H = 200

In practice, we read the stepper motors’ rotation angles and
the end-effector’s coordinate by calling the DLL provided by
the Dobot Magician, which are then concatenated to form the
agent’s  state.  The agent’s  action in  each timestep is  obtained
by the trained policy, and employed on the real robot as incre-
mental angles to move the three joints using the point-to-point
(PTP) command mode of Dobot Magician. During validation,
each  testing  episode  starts  with  the  joint  angles  reset  to  zero
and manually setting the positions of the target and obstacle in
the real-world environment that are sampled randomly in sim-
ulation, and terminates whenever the “finger” reaches the tar-
get, or the robot hits the obstacle or at the horizon of .
To prevent unsafe behaviors on the real robot, we restrict the
target’s sample space to half of the reachable area of the “fin-
ger”.  Computation  of  the  action  is  done  on  an  external  com-
puter,  and  commands  are  streamed  over  the  radio  at  10Hz
using a USB virtual serial port as communication.

We report the numerical results in terms of success rate and
average  timesteps  over  20  testing  episodes  for  each  investi-
gated  method  in Table II,  where  the  mean  across  five  runs
using  the  corresponding  policy  trained  in  simulation  is  pre-
sented,  and  the  confidence  intervals  are  the  standard  errors.
From Table II,  it  can be observed that  MFRS achieves a  sig-
nificantly  larger  success  rate  and  smaller  average  timesteps
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Fig. 8.     Illustration of the real-world task in (a) simulation environment; and
(b) real-world environment.
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Fig. 9.     Success  rate  in  each  learning  episode  of  all  investigated  methods
training on the real-world task in simulation environment.
 

  
2 https://hongyuding.wixsite.com/mfrs (or https://www.bilibili.com/video/
BV1784y1z7Bj)
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compared to all the baselines on the real robots, which is con-
sistent  with the results  in the simulation experiment.  In addi-
tion,  our  method  obtains  relatively  smaller  confidence  inter-
vals  and  standard  errors  than  the  baselines.  It  indicates  that
MFRS can provide stable learning results when employed on
a  real  robot.  In  summary,  it  is  verified  that  MFRS is  able  to
handle  the  goal-conditioned  tasks  in  the  real-world  scenario
using the policy trained in the corresponding simulation envi-
ronment,  providing  better  performance  and  successfully
improving the sample efficiency of the RL algorithm.  

VI.  Conclusion

In  this  paper,  we  propose  a  novel  magnetic  field-based
reward  shaping  (MFRS)  method  for  goal-conditioned  RL
tasks, where we consider the dynamic target and obstacles as
permanent  magnets  and  build  our  shaping  reward  function
based on the intensity values of the magnet field generated by
these magnets. MFRS is able to provide an explicit and infor-
mative  optimization  landscape  for  policy  learning  compared
to  the  distance-based  setting.  To  evaluate  the  validity  and
superiority  of  MFRS,  we  use  CoppeliaSim  to  build  a  simu-
lated 3-D robotic manipulation platform and generate a set of
goal-conditioned  tasks  with  various  goal  dynamics.  Further-
more,  we  apply  MFRS  to  a  physical  robot  in  the  real-world
environment with the policy trained in simulation. Experimen-
tal  results  both  in  simulation  and  on  real  robots  verify  that
MFRS  significantly  improves  the  sample  efficiency  in  goal-
conditioned  RL  tasks  with  the  dynamic  target  and  obstacles
compared to the relevant existing methods.

Our future work will focus on extending MFRS to the sce-
nario with high-dimensional goals using the concept and prop-
erties  of  the  magnetic  field,  and further  generalizing  to  more
diversified real-world tasks apart from the area of robotic con-
trol.  Another  significant  direction  would  be  incorporating
some  perception  abilities  with  the  decision-making  RL,  e.g.,
equipping the robot with additional sensors to obtain the pose
of  the  dynamic  target  and  obstacles,  to  fuse  MFRS  into  an
end-to-end  integrated  pipeline  for  more  practical  real-world
validation of robotic systems.  

Appendix
Proof of the Optimal Policy Invariance of MFRS

M = (S,G,A,T ,R,γ)
M′ = (S,G,A,T ,R′,γ)

R′ = R+F

Theorem 2: Let  be the original  MDP
with  the  environment  reward R,  and 
be the shaped MDP with the shaped reward , where

π∗M
π∗M′ M′

π∗M′ π∗M

the shaping reward function F satisfies (20) with the goal-con-
ditioned  potential  function  Φ  initialized  to  zero.  Let  and

 be the optimal  policies  in M and ,  respectively.  Then,
 is consistent with .

Proof: According  to  UVFA  [22],  the  optimal  goal-condi-
tioned Q-function in M should be equal to the expectation of
long-term cumulative reward as
 

Q∗M(s,a,g) = E

 ∞∑
t=0

γtrt

 . (24)

M′Likewise,  the  optimal  goal-conditioned  Q-function  in 
can be denoted as
 

Q∗M′ (s,a,g) = E

 ∞∑
t=0

γtr′t


= E

 ∞∑
t=0

γt(rt + ft)

 . (25)

According to (20), we have
 

Q∗M′ (s,a,g) = E
[ ∞∑

t=0

γt(rt +γΦt+1(st+1,at+1,g)

−Φt(st,at,g))
]

= E

 ∞∑
t=0

γtrt

+E

 ∞∑
t=1

γtΦt(st,at,g)


−E

 ∞∑
t=0

γtΦt(st,at,g)


= E

 ∞∑
t=0

γtrt

−Φ0(s0,a0,g). (26)

Q∗M′ (s,a,g) = Q∗M(s,a,g)−Φ0(s0,a0,g)
Φ0(s0,a0,g)

M′

Thus,  we  have ,
where  denotes the initial value of the goal-condi-
tioned potential function. The policy is obtained by maximiz-
ing  the  value  of  goal-conditioned  Q-function,  and  hence  the
optimal policy in  can be expressed as
 

π∗M′ = arg max
a∈A

Q∗M′ (s,a,g)

= arg max
a∈A

[
Q∗M(s,a,g)−Φ0(s0,a0,g)

]
. (27)

π∗M′ = arg maxa∈AQ∗M′ (s,a,g) = π∗M
π∗M′ π∗M

Therefore,  if  the  value  of  Φ  is  initialized  to  zero,  then  we
have ,  which  demonstrates
that  is consistent with  in the goal-conditioned RL set-
ting of our method. ■
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