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Abstract—While reinforcement learning (RL) algorithms are
achieving state-of-the-art performance in various challenging
tasks, they can easily encounter catastrophic forgetting or
interference when faced with lifelong streaming information.
In this article, we propose a scalable lifelong RL method that
dynamically expands the network capacity to accommodate new
knowledge while preventing past memories from being perturbed.
We use a Dirichlet process mixture to model the nonstationary
task distribution, which captures task relatedness by estimat-
ing the likelihood of task-to-cluster assignments and clusters the
task models in a latent space. We formulate the prior distribu-
tion of the mixture as a Chinese restaurant process (CRP) that
instantiates new mixture components as needed. The update and
expansion of the mixture are governed by the Bayesian non-
parametric framework with an expectation maximization (EM)
procedure, which dynamically adapts the model complexity with-
out explicit task boundaries or heuristics. Moreover, we use the
domain randomization technique to train robust prior parame-
ters for the initialization of each task model in the mixture; thus,
the resulting model can better generalize and adapt to unseen
tasks. With extensive experiments conducted on robot navigation
and locomotion domains, we show that our method successfully
facilitates scalable lifelong RL and outperforms relevant existing
methods.

Index Terms—Chinese restaurant process (CRP), Dirichlet pro-
cess mixture, domain randomization, expectation maximization
(EM), lifelong reinforcement learning (RL).

I. INTRODUCTION

L IFELONG learning, also referred to as continual learning,
corresponds to the capability of continually accommodat-

ing new information throughout the lifespan without forgetting
previous knowledge, which is crucial for artificially intelli-
gent agents performing in real-world scenarios and proceeding
multiple tasks in sequence [1] An effective lifelong learning
system must satisfy two potentially conflicting goals of stably
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maintaining old skills and rapidly acquiring a new skill. These
simultaneous constraints represent the long-standing chal-
lenge as stability-plasticity dilemma [2]. While reinforcement
learning (RL) algorithms [3] have achieved state-of-the-art
performance in various challenging tasks [4]–[10], they typi-
cally exhibit poor sample efficiency and generalization ability
when trained on sequential tasks, since continual acquiring
new information from a nonstationary task distribution can
easily result in catastrophic forgetting or interference [11].
Learning systems are trained to keep outputs consistent with
inputs using explicit or implicit parametric function approx-
imation. Training them toward a new objective will change
the data distribution and lead to abrupt erasure of previously
acquired knowledge, resulting in high plasticity but little
stability.

Previous attempts to alleviate catastrophic forgetting in
lifelong RL settings can generally be classified into three
categories: 1) replay based [11], [12]; 2) regularization
based [13], [14]; and 3) expansion based [15], [16]. Replay-
based approaches use a replay buffer to store old samples,
which are reproduced for rehearsal and interleaving online
updates when learning a new task. They require large work-
ing memory to store and replay old samples, which might not
be viable in real-world situations [17]. Regularization-based
approaches retain old knowledge by adding regularization
terms that impose constraints on the update of network weights
and prevent large changes on significant weights. With a lim-
ited amount of neural resources, comprising additional loss
terms can result in a tradeoff on the accomplishment of the old
and new tasks [1]. In contrast, expansion-based approaches dif-
fer from the others in that they dynamically expand the model
architecture, for example, a policy/option library [18], [19] or
the network capacity [20], upon the arrival of each task to
accommodate new knowledge. Therefore, they can mitigate
catastrophic forgetting by avoiding the perturbation on past
memories from the new information [21]. However, previous
expansion-based approaches typically suffer from the lack of
scalability due to two critical limitations: 1) they heavily rely
on explicit task boundaries and hand-designed heuristics for
incorporating new resources and 2) the network size may scale
quadratically in the number of encountered tasks [15].

Humans can continually accommodate new information and
expand cognitive capabilities while preventing past memories
from being perturbed. For the purpose of artificial general
intelligence (AGI), RL algorithms ought to continually build
on their experiences to develop increasingly complex skills
and adapt quickly to new tasks throughout their lifetime [22],

2168-2267 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on May 20,2022 at 07:55:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0304-3965
https://orcid.org/0000-0003-3929-4707
https://orcid.org/0000-0002-7425-3559


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

without forgetting what has already been learned. In this arti-
cle, we aim at a novel expansion-based method for scalable
lifelong RL, with the assumption that task boundaries are not
provided explicitly. We develop and maintain a Dirichlet pro-
cess mixture of task models to tackle the nonstationary task
distribution, which captures task relatedness by estimating the
likelihood of assigning each task to mixture components and
clusters the task models in a latent space. We formulate the
prior distribution of the mixture as a Chinese restaurant pro-
cess (CRP) that assigns some probability of instantiating a new
task model as needed. During lifelong learning, the mixture
model is updated via an expectation maximization (EM) pro-
cedure, where the E-step calculates the posterior inference of
task-to-cluster probabilities and the M-step updates all model
parameters for future learning. Furthermore, we adopt the
domain randomization technique to train robust prior param-
eters for the initialization of each task model in the mixture,
thus the resulting model can better generalize and adapt to
unseen tasks.

Our primary contribution is a scalable lifelong RL method
that uses an EM procedure to learn a Dirichlet process mix-
ture of robust task models with a flexible memory system,
where the prior distribution of the mixture is formulated as a
CRP. With explicitly estimating task relatedness, our method
has the potential to enhance the stability of past memories
by modulating transferability across similar tasks, and to pro-
mote plasticity by recognizing outlier tasks that require a more
significant degree of adaptation. The mixture is updated and
expanded under the Bayesian nonparametric framework that
dynamically adapts the model complexity over the agent’s life-
time, instead of fixing the model complexity beforehand in
parametric approaches. By treating the task-to-cluster assign-
ments as latent variables, our method is capable of adapting
to the nonstationary task distribution without task boundaries
or hand-designed heuristics for incorporating new resources.
Our method is evaluated in the context of deep determinis-
tic policy gradient (DDPG) algorithm on robot navigation and
MuJoCo [23] locomotion domains in lifelong learning settings.
Experimental results verify that our method facilitates efficient
lifelong RL and outperforms several baseline methods.

The remainder of this article is structured as fol-
lows. Section II introduces preliminaries of RL algorithms.
Section III presents the problem statement and our method in
detail. Section IV shows the experimentation on the robot nav-
igation and MuJoCo locomotion domains. Section V reviews
related work regarding lifelong RL, and Section VI presents
concluding remarks and future work.

II. PRELIMINARIES

A. Reinforcement Learning

The standard paradigm of an RL agent interacting with
an environment is formalized as a Markov decision process
(MDP) 〈S,A, T ,R, γ 〉, where S and A denote the state and
action spaces, respectively, T : S×A×S → [0,∞) defines the
probability density function of transitioning to state st+1 ∈ S
conditioned on the agent taking action at ∈ A in state st ∈ S ,

R : S×A→ R is the reward function that maps each transi-
tion (st, at) to a scalar, and γ ∈ [0, 1) is the discounting factor.
RL aims to learn a policy, a probability density function over
available actions given a state π(at|st), that maximizes the
expected return as

π∗ = arg max
π

Eπ

[ ∞∑
t=0

γ trt

]
(1)

where rt ∼ r(st, at) denotes the received reward after taking
action at in state st.

Model-free methods directly interact with an initially
unknown environment to learn optimal policies, releasing the
dependency on an explicit model or any prior knowledge of
the environment. Off-policy methods decouple the behavior
and target policies, enabling an agent to learn using samples
collected by arbitrary policies or from replay buffers. In our
method, we utilize the DDPG [24] algorithm, a popular vari-
ant of the model-free off-policy Q-learning [25] algorithm for
continuous control.

B. Q-Learning

The expected return is related to the optimal action-value
function as

Q∗(s, a) = max
π

Eπ

[ ∞∑
t′=t

γ t′−trt′ |st = s, at = a

]
(2)

which is the maximal sum of rewards rt′ ∼ r(st′ , at′) multiplied
by the discount factor γ at each step t′, after executing action a
in state s. The optimal Q-function obeys a significant identity,
that is, the Bellman equation [26]

Q∗(s, a) = Es′
[

r + γ max
a′

Q∗
(
s′, a′

)|s, a

]
(3)

where r ∼ r(s, a). In tabular cases, the widely used Q-learning
algorithm [25] updates the action-value function as

Q(s, a)← Q(s, a)+ α

(
r + γ max

a′
Q

(
s′, a′

)− Q(s, a)

)
(4)

where α ∈ (0, 1] is the learning rate.

C. Deep Deterministic Policy Gradient

For generalization in continuous state spaces, we usually
use a function approximator to approximate the action-value
function, Qϕ(s, a) ≈ Q∗(s, a), where ϕ denote the learning
parameters. In deep RL, a deep neural network (DNN) is uti-
lized to approximate the Q-function, known as the famous
deep Q-network (DQN) [27]. The parameters ϕ are adjusted
at each iteration to minimize the mean-squared error (MSE) in
the Bellman equation, that is, Bellman residual. This induces
a loss function L(ϕ) that varies at every learning iteration

L(ϕ) = Es,a,r,s′

[(
r + γ max

a′
Qϕ

(
s′, a′

)− Qϕ(s, a)

)2
]
. (5)

To be applicable to continuous action spaces, DDPG [24]
learns a deterministic neural network policy μφ (i.e., the
actor) along with the action-value function Qϕ (i.e., the critic)
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by performing gradient updates on parameter sets ϕ and φ.
Analogous to the classical Q-learning, the critic is trained to
minimize the Bellman residual over all sampled transitions as

L(ϕ) = Es,a,r,s′
[(

r + γ Qϕ

(
s′, μφ

(
s′
))− Qϕ(s, a)

)2
]
. (6)

The actor is then trained to yield actions that maximize the
Q-values estimated by the critic, equivalent to minimizing the
loss function as

L(φ) = −Es,a,r,s′
[
Qϕ(s, μφ(s))

]
. (7)

While DDPG trains a deterministic policy, its behavior policy
used to collect transitions during training is usually augmented
with a Gaussian (or Ornstein-Uhlenbeck) noise. Therefore,
actions are collected as a ∼ N (μφ(s), ς2) for fixed standard
deviation ς .

III. METHOD

In this section, we first formulate the problem statement of
lifelong RL. Then, we explain the idea of modeling the latent
task structure with a mixture model to deal with the nonsta-
tionary task distribution. Next, we present the nonparametric
Bayesian inference framework that formulates the prior distri-
bution over the mixture of task clusters as a CRP and updates
the mixture using the EM algorithm. Finally, we introduce the
domain randomization approach that trains the robust prior
parameters for each task model.

A. Problem Statement

Let ϕ and φ denote the weights of the DQN (critic) and
the policy network (actor), respectively, and θ = (ϕ,φ). The
model receives the state–action pair (s, a) as its input x and
produces an action-value function prediction Qϕ(s, a) as its
predicted output ŷ. The target value r + γ Qϕ(s′, μφ(s′)) can
be considered as the ground-truth label y to mimic a super-
vised learning setting, where r and s′ are the received reward
and the next state when taking action a in state s. The life-
long learning scenario deals with an infinite sequence of tasks
D = [D1,D2, . . . , ] where each task Dt is associated with a
batch of transitions Tt = ∑

i(si, ai, ri, s′i). The tasks change
over the lifetime, leading to a nonstationary task distribution,
and the current task identity at each time period t is unknown
to the learner. The learner has to perform all tasks in the
sequence. The full objective is thereby given as to minimize
the unbiased sum of losses among all tasks as

L(θ) = L(ϕ, φ) = EDt∼D
[
Ex,y∼Dt

[(
ŷ− y

)2
]]

= EDt∼D
[
Es,a,r,s′∼Dt

[
(r + γ Qϕ

(
s′, μφ

(
s′
))− Qϕ(s, a))2

]]
(8)

which is equivalent to minimizing the Bellman residual over
the given transitions. While being trained for the task at time
period t, the learner is fed with samples only from task Dt.

In real-world applications, tasks might correspond to cus-
tomized requirements, user preferences, unknown dynamics of
the system, or other unexpected perturbations. This problem
formulation involves a wide variety of RL challenges requiring

lifelong adaptation to sequential tasks and balance between
plasticity and stability. Throughout the lifetime, the learner
needs to continually build upon previously learned knowl-
edge to facilitate optimizing the policy of the current task at
hand, in conjunction with accommodating the acquired new
information for future learning.

B. Modeling Latent Task Structure

Changing circumstances and unpredictable perturbations are
quite common in real-world scenarios, resulting in heteroge-
neous task distributions. Assuming a single model for lifelong
RL is not suitable because it is unlikely to adequately adapt
the learner to various tasks using only a few gradient steps.
Expansion-based lifelong learning approaches follow the idea
that if we learn a new task with new parameters and keep
previous parameters unchanged, we can well preserve the
knowledge of previous tasks. A straightforward way is to train
and store separate parameters for each task [15], while it is
rather restricted to ideal settings with explicit task boundaries.
Moreover, it quickly suffers from the lack of scalability as
the number of encountered tasks increases. In contrast, cap-
turing task relatedness is promising to enhance the stability
of past memories by modulating both positive and negative
transfer, and to promote plasticity by recognizing outlier tasks
that require a more significant degree of adaptation [28], [29].
Therefore, we begin with a more rational idea that clusters
previous tasks into a mixture of Bayesian models with an
appropriate notion of task relatedness, reducing redundancy
within past memories.

For handling the task variability, we assume that the param-
eters of each task model are drawn from a Dirichlet process
mixture of base distributions {θ (l)}Ll=1, where θ (l) denote the
model parameters corresponding to the lth cluster. Then, we
estimate the relatedness across tasks by calculating the likeli-
hood of task-to-cluster assignments, which equals to clustering
the task models in a latent space. Each task cluster is ini-
tialized by some prior parameters θ−, which is learned by
the domain randomization technique and will be introduced
in more detail in Section III-D. The prior distribution P(θ)

over the mixture of task models is formulated as a CRP
that allows for some probability of instantiating a new clus-
ter as needed. Without knowing the number of task clusters,
we start with a single mixture component and initialize this
task model from θ−. From here, we continually maintain and
update the mixture model to handle the lifelong task distribu-
tion, and instantiate new mixture components as required using
the CRP.

Existing approaches usually rely on awareness of explicit
task identities, which is unlikely to hold in real-world appli-
cations. Instead, we use the mixture model to estimate the
prior and posterior distributions over task clusters, which are
utilized to predict task identifies and update parameters of all
task models. This results in a scalable lifelong RL method that
jointly learns task-to-cluster assignments and model parame-
ters, which can efficiently modulate the task transferability by
clustering task models in a latent space. The main idea of our
method is illustrated as in Fig. 1.
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Fig. 1. Overview of our method. n(l) is the assigned task count per cluster,
and ξ is a constant that regulates the instantiation of new clusters.

C. Dirichlet Process Mixture for Modeling Task Distribution

Let the categorical latent variable z denote the cluster
assignment of task model parameters θ . Since z is unknown,
we ought to infer the posterior task-to-cluster assignments
P(z|X, Y), where (X, Y) = ∑

i(xi, yi) is the dataset con-
structed from a batch of transitions at a given time period.
Moreover, we cannot know the total amount of task clus-
ters in advance. Hence, we propose to employ a Bayesian
nonparametric framework, specifically the Dirichlet process
mixture model (DPMM), to formulate the nonstationary task
distribution into a flexible structure where task clusters are
dynamically established and expanded throughout lifelong
learning. The instantiation of DPMM is depicted by the CRP
that is well suitable for lifelong learning. The CRP is a
discrete-time stochastic process analogous to seating an infi-
nite sequence of customers at tables in a Chinese restaurant,
where each table represents a distinct cluster. Each customer
chooses a preexisting table with a probability proportional to
the count of customers already seated there, or sits down alone
at a new empty table with a probability proportional to a preset
concentration parameter.

For an infinite sequence of tasks D = [D1,D2, . . . , ] the
first task is allocated to the nominal cluster since the num-
ber of task clusters is unknown. At time period t, assume
that the accumulated knowledge from previous time periods
1, 2, . . . , t−1 is accommodated as a mixture of L task clusters
{θ (l)

t }Ll=1. Then, the prior distribution of cluster assignments for
the current task is given by

P
(
θ

(l)
t

)
= P(zt = l) =

{
n(l)

t−1+ξ
, l ≤ L

ξ
t−1+ξ

, l = L+ 1
(9)

where n(l) is the expected number of tackled tasks that have
occupied the lth cluster, and ξ is a constant positive concen-
tration parameter for regulating the new cluster instantiation.
l ≤ L indicates assigning the current task to an existing clus-
ter, and l = L + 1 implies the potential spawning of a new
task cluster into the mixture model. Taking all history periods
into account, the prior probabilities over task clusters become

P
(
θ

(l)
t |θ1:t−1, ξ

)
=

⎧⎨
⎩

∑t−1
t′=1

P
(
θ

(l)
t′

)
t−1+ξ

, l ≤ L
ξ

t−1+ξ
, l = L+ 1.

(10)

This nonparametric formulation fits the mixture distribution
without a constant number of components, allowing the mix-
ture to dynamically adapt its cluster structure to the increased
complexity of the lifelong learning process.

It may become an intractable combinatorial optimization
problem to directly maximize the expected likelihood of the
mixture model. We need a scalable approximation that can rep-
resent the conditional distribution of the latent variable with
maximum a posteriori (MAP) estimation. Hence, we employ
an EM procedure to update the mixture of task-specific param-
eters in an online manner, without access to samples from
previous tasks. Here, the E-step in EM computes the posterior
expectation of task-to-cluster assignments, that is, estimat-
ing the conditional mode of task-specific parameters, and the
M-step involves updating parameters of all task models for
future learning.

Let pθ (Y|X) denote the predictive-likelihood function
regarding the task model θ on a batch of samples (X, Y), that
is, P(Y|X, θ). The predictive function treats each sample as an
independent Gaussian N (yi; ŷθ (xi), σ

2) as

pθ (Y|X) = �iN
(

yi; ŷi, σ
2
)

= �iN
(

ri + γ Qϕ

(
s′i, μφ

(
s′i
));Qϕ(si, ai), σ

2
)

(11)

where ri ∼ r(si, ai) and σ 2 is a constant. First, we estimate the
expectation over preexisting task clusters and the potential new
one. The posterior probability of task-to-cluster assignment
P(θ

(l)
t |Xt, Yt) is calculated by the Bayes rule as

P
(
θ

(l)
t |Xt, Yt

)
=

P
(

Yt|Xtθ
(l)
t

)
P
(

Xt|θ (l)
t

)
P
(
θ

(l)
t

)
P(Xt, Yt)

. (12)

We assume that the input marginal likelihood P(Xt|θ (l)
t ) is

approximately invariant across tasks and can be neglected.
Then, the posterior can be roughly approximated by

P
(
θ

(l)
t |Xt, Yt

)
∝ p

θ
(l)
t

(Yt|Xt)P
(
θ

(l)
t

)
. (13)

Combining the predictive likelihood in (11) and the CRP prior
distribution in (10), we perform the E-step to compute the
posterior probabilities of task-to-cluster assignments as

P
(
θ

(l)
t |Xt, Yt

)
∝

{
p
θ

(l)
t

(Yt|Xt)
∑t−1

t′=1 P
(
θ

(l)
t′

)
, l ≤ L

p
θ

(l)
t

(Yt|Xt)ξ, l = L+ 1.

(14)

With the estimated posterior task-to-cluster assignments, we
turn to the M-step to maximize the expected log likelihood of
the mixture model as

L(θ t) = Eθ t∼P(θ t|Xt,Yt)

[
log pθ t(Yt|Xt)

]
. (15)

Supposing that each task model begins with some prior param-
eters θ−, the value of θ t after taking all history gradient
updates is calculated as

θ
(l)
t+1 = θ

(l)
1

+ α

t∑
t′=1

P
(
θ

(l)
t′ |Xt′ , Yt′

)
∇

θ
(l)
t′

log p
θ

(l)
t′

(Yt′ |Xt′) ∀l (16)
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Algorithm 1: Scalable Lifelong RL With A Dirichlet
Process Mixture

Input: Task sequence D = [D1, ...,Dt−1,Dt, ...],
robust prior parameters θ−

Output: Optimal model parameters θ∗t
1 Initialize L = 1, t = 1, l∗ = 1, and θ

(1)
1 ← θ−

2 for each time period t do
3 Initialize θ

(L+1)
t ← θ−

4 Receive a batch of transitions Tt=∑
i(si, ai, ri, s′i)

5 Construct (Xt, Yt) from Tt

6 Calculate p
θ

(l)
t

(Yt|Xt) using (11), ∀l ≤ L+ 1

7 Infer P(θ
(l)
t |Xt, Yt) using (14), ∀l ≤ L+ 1

8 if P(θ
(L+1)
t |Xt, Yt)>P(θ

(l)
t |Xt, Yt),∀l ≤ L then

9 Add θ
(L+1)
t to θ t thereafter

10 L← L+ 1
11 end
12 while not terminated do
13 E-step, re-calculate P(θ

(l)
t |Xt, Yt) using (13) with

updated θ
(l)
t , ∀l ≤ L

14 M-step, adapt θ
(l)
t using (17) with updated

P(θ
(l)
t |Xt, Yt), ∀l ≤ L

15 end
16 θ

(l)
t+1 ← θ

(l)
t , ∀l ≤ L

17 l∗ = arg maxl≤L p
θ

(l)
t+1

(Yt|Xt)

18 end

where α is the learning rate. In the lifelong learning setting,
all model parameters are updated at each time period. Hence,
we can perform the M-step in (16) by simply updating model
parameters at the previous time period θ t−1 on the newest
samples as

θ
(l)
t+1 = θ

(l)
t + αP

(
θ

(l)
t |Xt, Yt

)
∇

θ
(l)
t

log p
θ

(l)
t

(Yt|Xt) ∀l. (17)

This formation removes the requirement for memorizing sam-
ples of previous tasks, yielding a practical lifelong RL algo-
rithm that tackles a continual stream of data. In addition, the
E- and M-steps are iteratively alternated to converge to fully
implement the EM algorithm.

We summarize the proposed lifelong RL algorithm and out-
line it in Algorithm 1. At the nominal time period, we initialize
the mixture model that contains one entry θ

(1)
1 ← θ− in

line 1. From there, at each time step t, we first initialize an
empty task model from the prior parameters θ− in line 3.
Then, we collect a batch of transitions in line 4 and con-
struct the input–output samples in line 5. Next, we calculate
the predictive likelihood of all task models in line 6, and infer
the posterior task-to-cluster assignments in line 7. The CRP
prior allows some probability for instantiating a new cluster
to the mixture distribution, while the posterior task-to-cluster
assignments determine the expansion of the new task clus-
ter into the mixture model. In lines 8–11, the new potential
cluster is added to the mixture if its posterior probability is
larger than those of the L preexisting clusters. Then, we keep
alternating the E- and M-steps until the learning is terminated

in lines 12–15,1 and obtain the updated model parameters in
line 16. Using updated model parameters θ

(l)
t+1, the next batch

of transitions is predicted according to the most likely task l∗
in line 17.

D. Robust Prior via Domain Randomization

We formulate a mixture of task models for performing life-
long learning adaptation in the face of an infinite stream of
incoming data. New task models are instantiated as needed
under the Bayesian inference framework, where parameters of
each new task model are initialized from θ−. However, mod-
ern parametric models, for example, DNNs, are usually hard to
train in such a lifelong learning setting. They typically require
numerous iterations with plenty of training samples to learn a
sensible solution, which can be infeasible when faced with life-
long streaming information. Therefore, we employ the domain
randomization approach [30], [31] to train the prior parameters
θ− for each task model. Domain randomization is originally
proposed to learn control policies robust to the transfer from
simulation to reality, that is, “sim-to-real,” by randomizing var-
ious aspects of the simulated environment at training time. We
adopt this technique to learn robust model initialization that
can generalize well to nonstationary task distributions during
lifelong learning.

In contrast to learning a policy for one particular task, we
train a model θ− that is capable of tackling a diversity of
tasks. In the lifelong learning setting, we collect samples from
a finite number of tasks D− = [D1, . . . ,Dm], and use all these
samples to train a robust model prior. The objective is then
modified to minimize the expected loss, that is, the Bellman
residual, across a distribution of tasks as

L(
θ−

) = EDi∼D−
[
Ex,y∼Di

[(
ŷ− y

)2
]]

= EDi∼D−
[
Es,a,r,s′∼Di

[(
r + γ Qϕ−

(
s′, μφ− (s′)

)
− Qϕ− (s, a)

)2
]]

.

(18)

By training the model to adapt to variability in the nonsta-
tionary task distribution, the resulting model is supposed to
better generalize to unseen tasks. After a new task model is
instantiated from the prior parameters θ−, it might then better
adapt to any task using only a few gradient steps.

IV. EXPERIMENTS

Experiments are conducted on a suite of continuous control
tasks to show the applicability and scalability of our method in
lifelong learning settings. Using agents in these tasks, we cre-
ate a variety of representative RL problems with nonstationary
task distributions, where scalable lifelong learning is crucial.
The following two sections show empirical results and cor-
responding insights on the experimentation. We compare our
method to several baseline methods.

1) Fine-Tune: As a representative dynamic evaluation base-
line in [32] and [33], it continually trains a single base
model as the steaming data enters.

1Empirically, the learning is terminated when the change of the neural
network weights θ is smaller than a preset tiny threshold.
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2) Reservoir: Simple experience replay with reservoir
sampling can be a powerful tool in lifelong learn-
ing [11], [34]. It uniformly selects a batch of samples
from an infinite data stream, which is well suited
to manage the replay memory without explicit task
boundaries.

3) Consolidation: The policy consolidation [14] method
uses a cascade of hidden networks to simultaneously
remember policies at a range of timescales and reg-
ularize the current policy by its own history [35].
Since it does not require knowledge of task bound-
aries, we evaluate this regularization-based method for
comparison.

4) Progressive: We evaluate the progressive neural
network [15] as a classical expansion-based baseline for
lifelong learning, which freezes the previous network
and allocates new subnetworks to accommodate new
information [20]. Note that it requires explicit task
boundaries and labels.

We use the DDPG algorithm to handle continuous control
tasks, where the actor maps a given state to an estimated
optimal action and the critic approximates the action-value
function. Both the actor and critic are represented by a neural
network containing two 512-node hidden layers with ReLU
activation, and their parameters are optimized by gradient
descent. To promote good stability [24], we utilize the soft
updating strategy to update weights of target networks. For
Reservoir, the model is fed with two minibatches of the
same size at each learning iteration: one from the current
data stream and the other from the long-term replay memory.
For Consolidation, the model consists of four sets of hidden
networks in addition to the visible one that is amenable for
the current policy. The hyperparameters are set as: learning
rate α = 0.001, discounting factor γ = 0.99, and batch size
for network updating n = 64.

We define two performance metrics for each evaluation
unit, that is, a given tested approach running on a given task.
One is the return of one learning episode that is associated
with the learned policy, defined as

∑H
i=1 r(si, μφ(si)), where

H is the time horizon of the learning episode. The other
is the average return over all learning episodes, defined as
1
J

∑J
j=1

∑H
i=1 r(sj

i, μφ(sj
i)), where J is the number of learn-

ing episodes. The former will be plotted in figures and the
latter will be presented in tables. We continually change the
learning task at random for T = 50 times to create a life-
long learning process with a nonstationary task distribution
D = [D1, . . . ,DT ]. We report the performance of all tested
approaches for each task instance Dt(1 ≤ t ≤ T), and record
the statistical outcome over all encountered tasks to demon-
strate the capability of lifelong learning. Our code is available
online.2

A. Simple 2-D Navigation

As an explanatory experiment, we implement a simple 2-
D navigation task in a continuous state–action space to serve
as a proof of principle and test if our method achieves both

2https://github.com/HeyuanMingong/sllrl

Fig. 2. Simple 2-D navigation task in a lifelong learning setting where the
goal may change over time. Ṡ is the starting point and Ġ is the goal.

Fig. 3. Return per learning episode of baselines and our method in the 2-D
navigation task. Here and in similar figures below, the bold line depicts the
mean of received return per episode over T = 50 sequential tasks, and the
shaded plots 95% bootstrapped confidence intervals of the mean.

plasticity and stability in lifelong learning scenarios. As shown
in Fig. 2, the task is to move a point agent to a goal position
within a unit square. The state is the agent’s current position
in the 2-D coordination system. The action is a 2-D velocity
vector and is clipped to the range of [− 0.1, 0.1]. The reward
function is set as the negative Euclidean distance to the goal
position minus a minor control cost proportional to the action
magnitude. Each learning episode begins with a fixed initial
state, and terminates when the point agent reaches the region
within 0.01 of the goal position or the time step comes to the
horizon of H = 100. During lifelong learning, the goal posi-
tion may change over time within the unit square at random,
resulting in a nonstationary task distribution.

We first show main results of our method and baseline meth-
ods implemented on the 2-D navigation task. For our method,
L = 4 task clusters are instantiated totally. Fig. 3 presents the
received return per learning episode, and Table I reports the
numerical average return over 200 learning episodes. Fine-
tune obtains the worst lifelong learning performance under
a nonstationary task distribution, since it adopts the simplest
learning adaptation mechanism. Reservoir achieves slightly
higher average return than fine-tune, while its received return
per learning episode tends to oscillate more during lifelong
learning. We conjecture that replaying samples from other
tasks can impose some interference on the online updates when
learning a new task. Consolidation obtains better performance
than Reservoir, indicating that regularizing the current policy
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Fig. 4. Visualization of the Bayesian mixture during lifelong learning. (a) Initial three clusters are instantiated at the initial three time steps. (b) Fourth
cluster is instantiated at time step t = 16. (c) All the T = 50 tasks are clustered into four mixture components effectively.

TABLE I
NUMERICAL AVERAGE RETURN OVER 200 EPISODES OF BASELINES AND

OUR METHOD ON THE 2-D NAVIGATION TASK. HERE AND IN SIMILAR

TABLES BELOW, WE PRESENT THE MEAN OVER T = 50 SEQUENTIAL

TASKS AND CORRESPONDING STANDARD ERRORS. WE MARK

THE BEST PERFORMANCE IN BOLDFACE

by its own history to force it less overfitted to the task at
hand can alleviate catastrophic interference to some extent.
Progressive performs the best among the baseline methods,
which is supposed to benefit from maintaining stability by
blocking changes to the previous network and promoting plas-
ticity by allocating new subnetworks to accommodate new
knowledge.

In contrast, it can be observed from Fig. 3 that our method
achieves much faster learning adaptation to the nonstation-
ary task distribution compared to all baseline methods. Our
method takes only 20 learning episodes to obtain near-optimal
asymptotic performance for a given task during lifelong learn-
ing, while it takes far more than 100 episodes for all baseline
methods to achieve comparable performance. Table I illustrates
that our method obtains remarkably greater average return over
all learning episodes than all baselines. Based on explicitly
estimating task relatedness, our method is capable of enhanc-
ing stability by modulating transferability across tasks and
promoting plasticity by recognizing outlier tasks that require
a more significant degree of adaptation. Moreover, statistical
results show that our method achieves narrower confidence
intervals and smaller standard errors than all baselines, indi-
cating that our method enables more stable lifelong learning
adaptation to a changing distribution of tasks.

Furthermore, to test whether our method correctly esti-
mates task relatedness and clusters encountered tasks in a
latent space, we gain an intuition of the Bayesian mixture via

visualization to observe and comprehend the lifelong learn-
ing process. Each task is characterized by the reward function
associated with its goal position. Tasks with adjacent goals
reveal higher similarity and are likely to be assigned to the
same mixture component. Therefore, we employ the goal posi-
tion in the 2-D coordinate system as a visualization to measure
relatedness between tasks. As illustrated in Fig. 4, each data
point within the unit square represents a goal position asso-
ciated with a particular task Dt(1 ≤ t ≤ T). Tasks belonging
to different clusters in the mixture are depicted by data points
with different colors and shapes. We can observe that the four
task clusters are expanded into the mixture model at time steps
t = 1, 2, 3, 16 incrementally. During the entire lifelong learn-
ing process, the tasks under a nonstationary distribution over
T = 50 time steps are consecutively clustered as four mix-
ture components in a latent space, as visualized in Fig. 4(c).
It successfully verifies that our method is capable of clus-
tering tasks from a nonstationary distribution in a latent space
where similar tasks are closely spaced and tend to be assigned
to the same cluster. This is crucial for a scalable lifelong RL
algorithm since correctly estimating task relatedness is the pre-
requisite for modulating transferability across tasks. At each
time step, the task at hand is allocated to a preexisting clus-
ter or expanded as a new component in the mixture according
to the nonparametric Bayesian framework. This nonparametric
formulation fits the mixture distribution without a priori fixed
number of components and without any external information to
signal task boundaries in advance, which is critical for scalable
lifelong learning in real world.

B. MuJoCo Locomotion

The results in the simple 2-D navigation domain demon-
strate that our method facilitates scalable lifelong RL with
good balance between stability and plasticity. Next, we test
whether similar benefits can be obtained for lifelong learn-
ing when our method is applied to more sophisticated deep
RL problems at the scale of DNNs. In the next set of
experiments, we investigate two kinds of high-dimensional
continuous control problems based on the MuJoCo physics
engine [23].
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Fig. 5. Two kinds of MuJoCo locomotion tasks. (a) Reacher. (b) Hopper.

TABLE II
NUMERICAL AVERAGE RETURN OVER 200 LEARNING EPISODES OF

BASELINES AND OUR METHOD IMPLEMENTED ON THE TWO

KINDS OF MUJOCO LOCOMOTION DOMAINS

As shown in Fig. 5(a), one is the Reacher domain that aims
to move a two-joint torque-controlled robot arm to a partic-
ular target point. The reward function is set as the negative
Euclidean distance between the fingertip and the target loca-
tion, minus a minor control penalty proportional to the scale of
action. Each learning episode begins with a fixed initial state,
and terminates when the fingertip reaches the region within
0.001 of the target location or the time step comes to the
horizon of H = 100. The lifelong task distribution is created
by changing the target point within the reachable circle at ran-
dom. As shown in Fig. 5(b), the other is the Hopper domain
that requires a one-legged hopper robot to run forward at a
given velocity along the x-axis. The reward function is set as
the negative absolute difference between the current velocity
of the robot and a goal one, plus an alive bonus. Each learning
episode terminates when the robot falls down or the time step
comes to the horizon of H = 100. We consecutively change the
goal velocity randomly within the range of [0.0, 1.0], resulting
in a nonstationary task distribution.

We show primary results of baselines and our method imple-
mented on the two kinds of locomotion domains. Fig. 6
illustrates the received return per episode, and Table II
presents corresponding numerical average return over 200
learning episodes. Fine-tune and Consolidation obtain simi-
lar performance in both domains. Reservoir can receive high
returns at the early learning stage, while it tends to achieve
suboptimal performance later on since replaying old samples
of previous tasks may interfere with learning the new task.
Progressive also performs better than other baselines, demon-
strating the effectiveness and superiority of expansion-based
approaches for lifelong learning. Our method usually achieves
significantly more rapid and stable lifelong learning adaptation
compared to baseline approaches. By comparison, it consumes

Fig. 6. Received return per learning episode of baselines and our method in
the two kinds of MuJoCo locomotion domains. (a) Reacher. (b) Hopper.

significantly more computation cost for baseline approaches to
achieve comparable performance to our method. For example,
in the Hopper domain, our method only needs approximately
40 learning episodes to achieve a near-optimal return, while
all baselines can cost far more than 200 episodes.

The results reveal that our method effectively builds on
previously learned knowledge to improve learning adapta-
tion to new tasks throughout the lifetime. Governed by the
Bayesian nonparametric framework, the task identity at each
time period is automatically detected by MAP estimation.
Subsequently, our method retrieves the most similar experience
from the mixture of robust task models (including the potential
new cluster), which is supposed to benefit the new task at hand
most. By modulating transferability across tasks, our method
only requires to “fine-tune” the selected prior experience a lit-
tle bit using a small quantity of computational efforts, being
significantly more efficient for lifelong learning adaptation to
nonstationary task distributions.

C. Ablation Study

To identify the respective contribution of the two com-
ponents to the overall performance, that is: 1) DPMM and
2) domain randomization, we conduct an ablation study to
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Fig. 7. Received return per learning episode of the ablation study on all domains. (a) Navigation. (b) Reacher. (c) Hopper.

TABLE III
NUMERICAL AVERAGE RETURN OVER 200 LEARNING EPISODES

OF THE ABLATION STUDY ON ALL DOMAINS

separate the two components apart for observation on both the
Navigation and MuJoCo domains. During lifelong learning, we
implement four variants of our method as follows.

1) From Scratch: Without component used, it learns each
task from scratch, providing a lower bound to show the
benefits of lifelong transfer in general.

2) Robust: We employ domain randomization to train a
robust prior, and learn each task using DDPG with
parameters initialized from that prior.

3) DPMM: The domain randomization component is
ablated from our method.

4) DPMM+Robust: Both components are used.
Fig. 7 shows the received return per episode, and Table III
presents numerical average return over 200 learning episodes.

First, we identify how DPMM affects the lifelong learn-
ing performance by comparing From Scratch with DPMM,
and by comparing Robust with DPMM+Robust. It is observed
that DPMM and DPMM+Robust can largely improve the
performance of From Scratch and Robust, respectively, which
verifies the significant effectiveness of our DPMM component.
With formulating the nonstationary task distribution with an
increasing number of clusters, our DPMM component pro-
vides a flexible structure for modulating transferability across
tasks and accommodating new knowledge as needed.

Next, we test the capability of the adopted domain random-
ization technique. Comparing From Scratch with Robust, we
can observe that domain randomization is capable of improv-
ing learning performance to a large extent. It validates the
promising efficiency of domain randomization for learning
robust model initialization that can generalize well to nonsta-
tionary task distributions during lifelong learning. Comparing
DPMM with DPMM+Robust, it is observed that DPMM can
achieve a moderate performance improvement with the help

of domain randomization, as the promotion only occurs when
a new task cluster is expanded into the mixture.

Finally, we compare all the four variants. DPMM is the
crucial component of our method, in that removing this com-
ponent can cause a large drop in learning performance. DPMM
better facilitates learning performance than domain random-
ization, and combining the two components jointly results in
the best lifelong learning adaptation to the nonstationary task
distribution.

V. RELATED WORK

Lifelong learning considers learning multiple tasks in
sequence, which needs to retain previously learned knowl-
edge and leverage that knowledge to facilitate learning new
skills [36]. Various configurations in the literature are related
to lifelong RL. Multitask RL [37] aims to optimize the overall
performance of all tasks, which needs a reservoir of persistent
training samples for all tasks. Transfer RL [38], [39] assumes
the simultaneous availability of multiple source tasks and con-
centrates on facilitating the performance of a particular target
task. Meta-RL [33], [40], also called as few-shot RL, learns a
base model (i.e., the meta) that can quickly adapt to new tasks,
while not considering the alleviation of catastrophic forgetting
or interference.

A variety of approaches has been investigated to tackle
catastrophic forgetting or interference in the machine learning
community. These can be classified into three major categories
according to how the knowledge of previous tasks is memo-
rized and leveraged: 1) replay based; 2) regularization based;
and 3) expansion based.

Replay-based approaches use the idea of episodic memory,
where examples from prior tasks are stored to recall expe-
riences encountered in the past. While storing past exam-
ples for rehearsal can date back to 1990s [41], it yields
decent results against catastrophic forgetting in practical prob-
lems. Rolnick et al. [11] leveraged off-policy learning from
replay experiences to enhance stability, and used behavior
cloning to keep the policy distribution close to historical data.
Isele and Cosgun [42] proposed a rank-based method for the
online collection and preservation of training experiences in a
long-term memory to reduce the effects of forgetting. Instead
of storing training examples, Lopez-Paz and Ranzato [36]
stored gradients of previous tasks, such that at any time the
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gradients of all tasks except the current one can be used to
form a trust region that prevents forgetting. An inherent draw-
back is the constraint on the memory capacity as the number
of encountered tasks grows, which could limit its applica-
tion to large-scale problems. To avoid storing past examples,
Shin et al. [12] sampled synthetic data from a generative
model, shifting the problem to the training of this genera-
tive model. However, the generative model used to mimic
older parts of the data distribution can also suffer from catas-
trophic forgetting [14]. Furthermore, the policy trained using
experiences from an enormous range of domains may learn a
conservative strategy or fail to learn the task [43].

Regularization-based approaches are typically inspired by
theoretical neuroscience suggesting that synapses with differ-
ent levels of plasticity can protect consolidated knowledge
from forgetting [44]. From a computational perspective, addi-
tional regularization terms are imposed on the learning objec-
tive, aiming to identify the important weights of previous tasks
and penalize large updates on those weights when learning
a new task. Elastic weight consolidation (EWC) [13] slowed
down the learning for weights relevant to the knowledge of
previous tasks by adding a quadratic penalty on the differ-
ence between parameters of the old and new tasks weighted
by the Fisher information matrix. Similar to EWC, [45]
maintained an online estimate of the synapse’s importance
regarding past tasks and penalized changes to the most rel-
evant synapses, such that new tasks are trained with minimal
forgetting. Schwarz et al. [17] used a modified version of
EWC to mitigate forgetting when distilling the newly learned
behavior into the knowledge base. Kaplanis et al. [14], [35]
proposed a cascade of hidden networks that simultaneously
remember policies at a range of timescales and regularized
the current policy by its own history, thereby improving its
ability to learn without forgetting. In general, with limited
neural resources, comprising additional regularization terms
may lead to a tradeoff on the accomplishment of old and new
tasks [1].

On the other hand, expansion-based approaches incremen-
tally expand new architectural resources, for example, a pol-
icy/option library or the network capacity, in response to new
information. Conceptually, such a direction has two superiori-
ties compared with the above two: 1) catastrophic forgetting is
mitigated by protecting past memories from being perturbed
by the new information and 2) the model capacity is deter-
mined adaptively throughout the lifetime. The family of policy
reuse algorithms [16], [18], [46], [47] improved its explo-
ration in a new task by probabilistic exploitation of similar
policies from a built policy library. Analogously, option reuse
approaches [19], [48] summarized prior experience through
temporally extended actions (i.e., subpolicies or options) and
leveraged only reusable parts of the policy for future learning.
Another way is to expand the neural network capacity in the
context of deep learning. The simplest example is to freeze
early layers and fine-tune later layers when learning the new
task [49]. Rusu et al. [15], [50] blocked any changes to the
network trained on previous tasks and allocated a new sub-
network with fixed capacity to process the new information.
Similarly, dynamically expanding network [20] increased the

amount of trainable parameters to accommodate new tasks
incrementally and used group sparse regularization to decide
how many neurons to add at each layer. Parisi et al. [51] used
self-organizing networks to update connectivity patterns and
allocate neural resources dynamically for lifelong learning of
human action sequences.

Nevertheless, existing expansion-based approaches usually
suffer from the lack of scalability due to two critical limita-
tions: 1) most of them are studied in a rather restricted set-
ting that requires explicit task boundaries and hand-designed
heuristics for incorporating new resources and 2) the network
size may scale quadratically in the number of encountered
tasks. In contrast, we use a Dirichlet process mixture to han-
dle the nonstationary task distribution and automatically infer
task identities under the Bayesian nonparametric framework,
thereby achieving scalable lifelong RL. The proposed method
is an extension of our previous work in [52], which requires
an auxiliary set of networks to approximate the reward or state
transition function. In this article, we capture task relatedness
using Bayesian inference on the Bellman residual, thus intro-
ducing only a single set of networks to concurrently train the
policy and parameterize the task.

VI. CONCLUSION AND FUTURE WORK

In the article, we proposed a scalable lifelong RL method
that dynamically expands the network capacity to quickly
accommodate new knowledge while stably preserving past
memories. The nonstationary task distribution is modeled
by a Dirichlet process mixture that clusters the task-specific
parameters in a latent space. Governed by the Bayesian
nonparametric framework, the mixture is maintained via an
EM procedure, in conjunction with a CRP prior, to dynam-
ically adapt the model complexity without explicit task
boundaries or hand-designed heuristics. Based on captur-
ing task relatedness by estimating the likelihood of task-
to-cluster assignments, our method successfully enhances
stability by modulating transferability across tasks, and pro-
motes plasticity by recognizing outlier tasks that require
a more significant degree of adaptation. Furthermore, the
domain randomization technique is employed to train robust
task models for initializing the mixture components, thereby
providing better generalization ability when adapting to
unseen tasks. Experiments conducted on a suite of con-
tinuous control domains verify that our method facilitates
scalable lifelong learning performance to nonstationary task
distributions.

A few interesting research directions are worth investi-
gating for future work. One is to evaluate our method on
different domains, such as Atari games [27] and StarCraft
II learning environment [4]. Another is to improve the accu-
racy of task inference, which is the main bottleneck of our
method and could be addressed from several aspects. For
example, task relatedness is captured using Bayesian infer-
ence on the Bellman residual, where the “pseudo” ground
truth relies on the Q-network and will gradually change as
the learning proceeds, analogous to the classical DQN algo-
rithm [27]. To better capture task relatedness and modulate
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task transferability, we could use powerful variational infer-
ence approaches [53] to more accurately approximate posterior
distributions of task-to-cluster assignments. For another exam-
ple, we neglect the input marginal likelihood in (12) for
simplifying the posterior derivation. We could employ effi-
cient density estimators, for example, VAE [54], to describe
the marginal likelihood for more accurate posterior inference.
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