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Today’s lecture

Improving the policy gradient with a critic

The policy evaluation problem

Discount factors

The actor-critic algorithm

Goals

Understand how policy evaluation fits into policy gradients
Understand how actor-critic algorithms work
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Review: policy gradients

REINFORCE algorithm: Loop:

1. sample {τ i} from πθ(at|st) (run the policy)

2. ∇θJ(θ) ≈
∑
i

(∑T
t=0∇θ log πθ(a

i
t|sit)

)(∑T
t′=t γ

t′−tr(sit′ , a
i
t′)
)

3. θ ← θ + α∇θJ(θ)

“reward-to-go”:

Q̂πt,i = Q̂π(sit, a
i
t)

=
T∑
t′=t

γt
′−tr(sit′ , a

i
t′)
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Improving the policy gradient

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)

(
T∑
t′=t

γt
′−tr(sit′ , a

i
t′)

)
︸ ︷︷ ︸

Q̂πt,i: reward-to-go

Q̂πt,i: estimate of expected reward if we take

action ait in state sit

Question: can we get a better estimate?

Qπ(st, at) =
∑T
t′=t Eπθ [γt

′−tr(st′ , at′)|st, at]:
true expected reward-to-go

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)Qπ(sit, ait)
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Review: Reducing variance - Baselines

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log πθ(τ)[r(τ)− b]

b =
1

N

N∑
i=1

r(τ)

But... are we allowed to do that?

E[∇θ log πθ(τ)b] =
∫
πθ(τ)∇θ log πθ(τ)bdτ =

∫
∇θπθ(τ)bdτ

= b∇θ
∫
πθ(τ) dτ = b∇θ1 = 0

Subtracting a baseline is unbiased in expectation!

Average reward is not the best baseline, but it’s pretty good!
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What about the baseline?

Qπ(st, at) =
∑T
t′=t Eπθ [γt

′−tr(st′ , at′)|st, at]:
true expected reward-to-go

Let’s try to use the average reward as the baseline:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)
[
Qπ(sit, a

i
t)− b

]
b =

1

N

N∑
i=1

Qπ(sit, a
i
t) ≈ Eat∼πθ(at|st)

[
Qπ(sit, a

i
t)
]

︸ ︷︷ ︸
What is this?
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Review: Relationship between Q and V

State value function:

V π(s) = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s

]

Action value function:

Qπ(s, a) = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s,At = a

]

What is the relationship between V π(s) and Qπ(s, a)?
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Review: Relationship between Q and V

V π(s) = Eπ
[ ∞∑
k=1

γkRt+k+1|St = s

]

Qπ(s, a) = Eπ
[ ∞∑
k=1

γkRt+k+1|St = s,At = a

]

V π(s) = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s

]

=
∑
a

π(a|s)Eπ

[ ∞∑
k=1

γkRt+k+1|St = s,At = a

]
=
∑
a

π(a|s)Qπ(s, a) = Ea∼π[Qπ(s, a)]
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Review: State- & action- value function

Action value function Qπ(s, a): total reward from taking a in s

Qπ(s, a) = Eπ[Rt+1 + γV π(St+1)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γV π(s′)]

State value function V π(s): total reward from s

V π(s) = Ea∼π(a|s)[Qπ(s, a)]
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The state value function is the baseline!

b =
1

N

N∑
i=1

Qπ(sit, a
i
t) ≈ Eat∼πθ(at|st)[Q

π(sit, a
i
t)]

V π(st) = Eat∼πθ(at|st)[Q
π(sit, a

i
t)]

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)
[
Qπ(sit, a

i
t)− V π(sit)

]︸ ︷︷ ︸
What is this?
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The “advantage” function

Qπ(st, at) =
∑T

t′=t Eπθ [γt
′−tr(st′ , at′)|st, at]:

total reward from taking at in st following policy π

V π(st) = Eat∼πθ(at|st)[Q
π(st, at)]:

total reward from st following policy π

Aπ(st, at) = Qπ(st, at)− V π(st):

the advantage of at: how much better at is

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)
[
Qπ(sit, a

i
t)− V π(sit, a

i
t)
]

=
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)Aπ(sit, ait)
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The “advantage” function

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)Aπ(sit, ait)

the better this estimate, the lower the variance

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)

(
T∑
t′=t

γt
′−tr(sit′ , a

i
t′)− b

)
unbiased, but high variance single-sample estimate
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Value function fitting

Qπ(st, at) =
∑T

t′=t Eπθ
[
γt
′−tr(st′ , at′)|st, at

]
V π(st) = Eat∼πθ(at|st)[Q

π(st, at)]

Aπ(st, at) = Qπ(st, at)− V π(st)

Fit what to what? Qπ, V π, or Aπ?

In dynamic programming: Qπ(s, a) =
∑

s′,r p(s
′, r|s, a)[r + γV π(s′)]

Act in a model-free way: Qπ(st, at) ≈ r(st, at) + γV π(st+1)

Forget about the model p(s′, r|s, a)

Aπ(st, at) = Qπ(st, at)− V π(st) ≈ r(st, at) + γV π(st+1)− V π(st)︸ ︷︷ ︸
TD error

Let’s just fit V π(s)!
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Review: For large/continuous state/action spaces

Curse of dimensionality: Computational requirements grow
exponentially with the number of state variables

Theoretically, all state-action pairs need to be visited infinite times to
guarantee an optimal policy

In many practical tasks, almost every state encountered will never have
been seen before

Generalization: How can experience with a limited subset of the
state space be usefully generalized to produce a good approximation
over a much larger subset?
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Review: Curse of dimensionality

In discrete case, represent V (s) as a table

16 states, 4 actions per state
can store full V (s) in a table
iterative sweeping over the state space

An image

|S| = (2553)200×200

more than atoms in the universe
can we store such a large table?
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Review: Function approximation

It takes examples from a desired function (e.g., a value function) and
attempts to generalize from them to construct an approximation to
the entire function

Linear function approximation: V (s) =
∑
i φi(s)wi

Neural network approximation: V (s) = Vφ(s)
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Review: Function approximation

Function approximation is an instance of supervised learning, the
primary topic studied in machine learning, artificial neural networks,
pattern recognition, and statistical curve fitting

In theory, any of the methods studied in these fields can be used in the
role of function approximator within RL algorithms

RL with function approximation involves a number of new issues that
do not normally arise in conventional supervised learning, e.g.,
non-stationarity, bootstrapping, and delayed targets
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Value function fitting

Aπ(st, at) ≈ r(st, at) + γV π(st+1)− V π(st)

Âπ(st, at) ≈ r(st, at) + γV̂ π
φ (st+1)− V̂ π

φ (st)

Modified REINFORCE algorithm: Loop:

1. sample {τ i} from πθ(at|st) (run the policy)

2. ∇θJ(θ) ≈
∑
i

∑T
t=0∇θ log πθ(a

i
t|sit)Âπ(sit, ait)

3. θ ← θ + α∇θJ(θ)
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Review: Policy evaluation in dynamic programming

Compute the state-value function V π for an arbitrary policy π

V π(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γV π(s′)]

If the environment’s dynamics are completely known

In principal, the solution is a straightforward computation

Z Wang & C Chen (NJU) Actor-Critic Algorithms 21 / 61



Review: Policy evaluation in Monte Carlo

Considering Monte Carlo methods for learning the state-value
function for a given policy

V π(s): the expected return–expected cumulative future discounted
reward–starting from s
Estimate V π(s) from experience: simply average the returns observed
after visits to s
As more returns are observed, the average should converge to the
expected value

V π(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]
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Monte-Carlo evaluation with function approximation

V π(st) =
∑T
t′=t Eπθ

[
γt

′−tr(st′,, at′)|st
]

J(θ) = Es0∼p(s0)[V π(s0)]

Question: how can we perform policy
evaluation?

Monte Carlo policy evaluation

this is what policy gradient does
requires to reset the simulator

V π(st) ≈
∑T
t′=t γ

t′−tr(st′,, at′)

V π(st) ≈ 1
N

∑N
i=1

∑T
t′=t γ

t′−tr(st′,, at′)
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Review: Regression in supervised learning

We consider systems that apply a function f(·) to input items
x and return an output y = f(x)

In supervised learning, we deal with systems whose f(·) is
learned from samples (x,y)
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Review: Regression in supervised learning

We need to choose what kind of model we want to learn

Linear model, nonlinear model...
Parametric model, nonparametric model...
Decision trees, neural networks, Gaussian processes...
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Monte-Carlo evaluation using supervised regression

V π(st) ≈
∑T
t′=t γ

t′−tr(st′,, at′)

not as good as this:

V π(st) ≈ 1
N

∑N
i=1

∑T
t′=t γ

t′−tr(st′,, at′)

but still pretty good!

training data: (sit,

T∑
t′=t

γt
′−tr(sit′ , a

i
t′)︸ ︷︷ ︸

label: yit

)

supervised regression:

L(φ) = 1

2

∑
i

∑
t

||V̂ π
φ (s

i
t)− yit||2
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Review: Policy evaluation in temporal-difference learning

MC and TD in common

Use experience to solve the prediction problem, update their estimate
of V π for the non-terminal state St occurring in that experience

MC: must wait until the return following the visit is known (end of
an episode)

V π(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]

TD: need to wait only until the next time step, bootstrapping

V π(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γV π(St+1)|St = s]
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Can we do better? – From MC to TD evaluation

V π(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γV π(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γV π(s′)]

MC: The expected Gt is not known, a sample return is used in place
of the real expected return

DP: The true V π is not known, and the current estimate V (St+1) is
used instead

TD: It samples the expected values Rt+1, and it uses the current
estimate V (St+1) instead of the true V π

Combine the sampling of MC with the bootstrapping of DP
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TD policy evaluation with function approximation

Monte Carlo target: yit =
∑T
t′=t γ

t′−tr(sit′ , a
i
t′)

TD target for V π(sit):

yit =

T∑
t′=t

Eπθ
[
γt

′−tr(sit′ , a
i
t′)|sit

]
≈ r(sit, ait) + γV π(sit+1)

≈ r(sit, ait) + γV̂ πφ (sit+1)

Directly use previous fitted value function!
the “bootstrapped” estimate

training data:

(sit, r(s
i
t, a

i
t) + γV̂ π

φ (s
i
t+1)︸ ︷︷ ︸

label: yit

)

supervised regression:

L(φ) = 1

2

∑
i

∑
t

||V̂ π
φ (s

i
t)− yit||2
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Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

reward: game outcome

value function V̂ πφ (st): expected
outcome given board state

AlphaGo, Silver et al. 2016

reward: game outcome

value function V̂ πφ (st):
expected outcome given
board state
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An actor-critic algorithm

Batch actor-critic algorithm. Loop:

1. sample {(si, ai, ri, s′i)} from πθ(a|s)
2. policy evaluation: fit V̂ πφ (s) to samples using supervised regression

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

5. θ ← θ + α∇θJ(θ)

training data: (sit, r(s
i
t, a

i
t) + γV̂ π

φ (s
i
t+1)︸ ︷︷ ︸

label: yit

)

L(φ) = 1

2

∑
i

∑
t

||V̂ π
φ (s

i
t)− yit||2
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An actor-critic algorithm

Batch actor-critic algorithm. Loop:

1. sample {(si, ai, ri, s′i)} from πθ(a|s)
2. policy evaluation: fit V̂ πφ (s) to samples using supervised regression

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

5. θ ← θ + α∇θJ(θ)

training data: (sit, r(s
i
t, a

i
t) + γV̂ π

φ (s
i
t+1)︸ ︷︷ ︸

label: yit

)

L(φ) = 1

2

∑
i

∑
t

||V̂ π
φ (s

i
t)− yit||2
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Review: Discount rate γ ∈ [0, 1]

Assume that: 0 ≤ rmin ≤ r ≤ rmax ≤ ∞
Without discount factor: unbounded

V (st) = E[rt + rt+1 + rt+2 + ...]

≥ rmin + rmin + rmin + ...

=∞

With discount factor: bounded

V (st) = E[rt + γrt+1 + γ2rt+2 + ...]

≤ rmax + γrmax + γ2rmax + ...

=
rmax
1− γ
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Review: Discount rate γ ∈ [0, 1]

The expected discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3... =
∑∞
k=1 γ

kRt+k+1

The discount rate determines the present value of future rewards: a
reward received k time steps in the future is worth only γk−1 times
what it would be worth if it were received immediately

γ → 0, the agent is “myopic”, only maximizing immediate rewards

Akin to supervised learning that maximizes the log-likelihood of each
sample, log p(yi|xi)

γ → 1, the agent is “farsighted”, taking future rewards into account

Returns at successive time steps are related to each other

Gt = Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + ...)

= Rt+1 + γGt+1
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Review: γ changes the MDP

Without discount: With discount:
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Actor-critic algorithms

Batch actor-critic algorithm. Loop:

1. sample {(si, ai, ri, s′i)} from πθ(a|s)
2. policy evaluation: fit V̂ πφ (s) to samples using supervised regression

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

5. θ ← θ + α∇θJ(θ)

Online actor-critic algorithm. Loop:

1. take action a ∼ πθ(a|s), get (si, ai, ri, s
′
i)

2. policy evaluation: update V̂ πφ using target ri + γV̂ πφ (s′i)

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈ ∇θ log πθ(ai|si)Âπ(si, ai)
5. θ ← θ + α∇θJ(θ)
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Batch-mode (offline) vs. online

Batch-model (offline) algorithms

Collect a batch of samples using some policy
Fit the state- or action-value function iteratively

Online algorithms

Take some action to collect one sample
Fit the value function
Iteratively alternate the above two steps
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Architecture design

Online actor-critic algorithm. Loop:

1. take action a ∼ πθ(a|s), get (si, ai, ri, s
′
i)

2. policy evaluation: update V̂ πφ using target ri + γV̂ πφ (s′i)

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈ ∇θ log πθ(ai|si)Âπ(si, ai)
5. θ ← θ + α∇θJ(θ)
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Parallelization

Online actor-critic algorithm. Loop:

1. take action a ∼ πθ(a|s), get (si, ai, ri, s
′
i)

2. policy evaluation: update V̂ πφ using target ri + γV̂ πφ (s′i)

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈ ∇θ log πθ(ai|si)Âπ(si, ai)
5. θ ← θ + α∇θJ(θ)

works best with a batch (e.g., parallel workers)
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Review: Reducing variance - Baselines

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log πθ(τ)[r(τ)− b]

b =
1

N

N∑
i=1

r(τ)

But... are we allowed to do that?

E[∇θ log πθ(τ)b] =
∫
πθ(τ)∇θ log πθ(τ)bdτ =

∫
∇θπθ(τ)bdτ

= b∇θ
∫
πθ(τ) dτ = b∇θ1 = 0

Subtracting a baseline is unbiased in expectation!

Average reward is not the best baseline, but it’s pretty good!
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Review: Analyzing the variance

var = Eτ∼πθ(τ)[g(τ)
2(r(τ)− b)2]− Eτ∼πθ(τ)[∇θ log πθ(τ)(r(τ)− b)]

2︸ ︷︷ ︸
Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)]

2

(baselines are unbiased in expectation)

dvar

db
=

d

db
E[g(τ)2(r(τ)− b)2]

=
d

db
(E[g(τ)2r(τ)2]−2E[g(τ)2r(τ)b] + b2E[g(τ)2]︸ ︷︷ ︸

dependent of b

)

= −2E[g(τ)2r(τ)] + 2bE[g(τ)2] = 0

b∗ =
E[g(τ)2r(τ)]
E[g(τ)2]

This is just expected reward, but weighted
by gradient magnitudes!
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Critics as state-dependent baselines

Actor-critic: ∇θJ(θ) ≈ 1
N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)
(
r(sit, a

i
t) + γV̂ πφ (sit+1)− V̂ πφ (sit)

)
+ lower variance (due to critic)

- not unbiased (if the critic is not perfect)

Policy gradient: ∇θJ(θ) ≈ 1
N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)
((∑T

t′=t γ
t′−tr(sit′ , a

i
t′)
)
− b
)

+ no bias

- higher variance (because single-sample estimate)

Can we use V̂ πφ and still keep the estimator unbiased?

∇θJ(θ) ≈ 1
N

N∑
i=1

T∑
t=0

∇θ log πθ(ait|sit)
((∑T

t′=t γ
t′−tr(sit′ , a

i
t′)
)
− V̂ πφ (sit)

)
+ no bias

+ lower variance (baseline is closer to the return)
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n-step bootstrapping: Combine MC and one-step TD

Neither MC or one-step TD is always the best, we generalize both
methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task

One-step TD: In many applications, one wants to be able to update
the action very fast to take into account anything that has changed

However, bootstrapping works best if it is over a length of time in
which a significant and recognizable state change has occurred

n = 1 n-step TD n =∞

TD(0) ↔ MC
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n-step TD prediction

Perform an update based on an intermediate number of rewards,
more than one, but less than all of them until termination
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Review: MC and TD(0) updates

In MC updates, the target is the complete return

Gt = Rt+1 + γRt+2 + ...+ γT−t+1RT

V (St)← V (St) + α[Gt − V (St)]

= V (St) + α[Rt+1 + γRt+2 + ...+ γT−t+1RT − V (St)]

In TD(0) updates, the target is the one-step return

Gt:t+1 = Rt+1 + γV (St+1)

V (St)← V (St) + α[Gt:t+1 − V (St)]

= V (St) + α[Rt+1 + γV (St+1)− V (St)]
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n-step TD update rule

For n-step TD, set the target as the n-step return

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)

All n-step returns can be considered approximations to the complete
return, truncated after n steps and then corrected for the remaining
missing terms by V (St+n)

V (St)← V (St) + α[Gt:t+n − V (St)]

= V (St) + α[Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)− V (St)]
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Actor-critics with n-step returns

TD(0): Âπ(st, at) = r(st, at) + γV̂ π
φ (st+1) − V̂ π

φ (st)

+ lower variance
- higher bias if value if wrong (it always is)

Monte Carlo: ÂπMC(st, at) =
∑T

t′=t
γt
′−tr(st′ , at′) − V̂ π

φ (st)

+ no bias
- higher variance (because single-sample estimate)

Question: Can we combine these two, to control bias/variance
trade-off?
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Actor-critics with n-step returns

TD(0): Âπ(st, at) = r(st, at) + γV̂ π
φ (st+1) − V̂ π

φ (st)

+ lower variance
- higher bias if value if wrong (it always is)

Monte Carlo: ÂπMC(st, at) =
∑T

t′=t
γt
′−tr(st′ , at′) − V̂ π

φ (st)

+ no bias
- higher variance (because single-sample estimate)

n-step TD: Âπn(st, at) =
∑t+n

t′=t
r(st′ , at′) + γnV̂ π

φ (st+n) − V̂ π
φ (st)

choosing n > 1 often works better!
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Eligibility traces: unify/generalize TD and MC

Almost any TD method can be combined with eligibility traces to
obtain a more general method that may learn more efficiently

e.g., the popular TD(λ) algorithm, λ refers the use of an eligibility trace
Produce a family of methods spanning a spectrum that has MC
methods at one end (λ = 1) and one-step TD methods at the other
(λ = 0)

Eligibility traces offer an elegant algorithmic mechanism with
significant computational advantages (compared to n-step TD)

Only a single trace vector is required rather than a store of the last n
feature vectors
Learning also occurs continually and uniformly in time rather than
being delayed and then catching up at the end of the episode
Learning can occur and effect behavior immediately after a state is
encountered rather than being delayed n-steps
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The λ-return

How to interrelate TD and MC?

e.g., average one-step and infinite-step returns, G = (Gt +Gt:t+1)/2
An update that averages simpler component updates is called a
compound update

The TD(λ) algorithm can be understood as one particular way of
averaging n-step updates

Gλt = (1− λ)
∞∑
n=1

λn−1Gt:t+n

= (1− λ)
T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt
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Backup diagram for TD(λ)

Z Wang & C Chen (NJU) Actor-Critic Algorithms 54 / 61



The weight distribution
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Generalized advantage estimation (GAE): Actor-critics with eligibility traces

n-step TD: Âπn(st, at) =
∑t+n

t′=t r(st′ , at′) + γnV̂ π
φ (st+n)− V̂ π

φ (st)

Weighted combination of all n-step returns: wn ∝ λn−1

ÂπGAE(st, at) =
∑T

n=1wnÂ
π
n(st, at)

ÂπGAE(st, at) =

T∑
t′=t

(γλ)t
′−tδt′

δt′ = r(st′ , at′) + γV̂ π
φ (st′+1)− V̂ π

φ (st′)
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Review

Actor-critic algorithms

Actor: the policy
Critic: value function
Reduce variance of policy gradient

Policy evaluation

Fitting value function to policy

Discount factors

Bound the value function
Also a variance reduction trick

Actor-critic algorithm design

One network (with two heads) or
two networks
Batch mode, or online (+ parallel)

State-dependent baselines

Another way to use the critic
Can combine: n-step returns or
eligibility traces
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Actor-critic examples

High-dimensional continuous control with generalized advantage
estimation (Schulman et al., 2016)

Batch-mode actor-critic
Blends Monte Carlo and function approximator estimators (GAE)

Asynchronous methods for deep reinforcement learning (Mnih, Badia,
Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu, 2016)

Online actor critic, parallelized batch
n-step returns with n = 4
Single network for actor and critic
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Learning objectives of this lecture

You should be able to...

Extend policy gradient methods to actor-critic algorithms
Use policy evaluation to fit the critic, i.e., the value function
Be able to implement the basic actor-critic algorithm

Know the actor-critics with n-step returns
Know the actor-critics with eligibility traces, i.e., generalized advantage
estimation
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Actor-critic suggested readings

Lecture 6 of CS285 at UC Berkeley, Deep Reinforcement Learning,
Decision Making, and Control

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-6.pdf

Classic papers
Sutton, McAllester , Singh, Mansour (1999). Policy gradient methods for
reinforcement learning with function approximation: actor critic algorithms with
value function approximation

DRL actor-critic papers
Mnih , Badia , Mirza, Graves, Lillicrap , Harley, Silver, Kavukcuoglu (2016).
Asynchronous methods for deep reinforcement learning: A3C parallel online
actor-critic.
Schulman, Moritz, L., Jordan, Abbeel (2016). High dimensional continuous control
using generalized advantage estimation: batch mode actor-critic with blended
Monte Carlo and function approximator returns
Gu, Lillicrap , Ghahramani , Turner, L. (2017). Q-Prop: sample efficient policy
gradient with an off-policy critic: policy gradient with Q-function control variate
Tuomas Haarnoja, et al. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor.
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THE END
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