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Review: Vanilla policy gradient (REINFORCE)

REINFORCE algorithm: Loop:
1. sample {7%} from my(as|s;) (run the policy)
2. VoI (0) ~ & S ST Valog moladlsh) SE_, 2" ~tr(shaf)
3. 00+ OzVeJ(Q)

T
Q" (sp.ap) = Zt,_t}""tr(sn. aw)

Policy
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Run the policy ﬂ
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Problems of vanilla policy gradient (REINFORCE)

1NT

Vol (0) = 1 > D> Vologmo(ai|s)Q" (s}, ap)

=1 t=1

0+ 0+ aVaJ(0)

@ Hard to select the step size a

o Too big step: Bad policy — data collected under bad policy — we
cannot recover (in Supervised Learning, data does not depend on
neural network weights)

o Too small step: Not efficient use of experience (in Supervised Learning,
data can be trivially re-used)
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Problems of vanilla policy gradient (REINFORCE)

@ Small changes in the policy parameters can unexpectedly lead to big
changes in the policy
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Gradient descent in parameter space

@ The step size in gradient descent results from solving the following
optimization problem, e.g., using line search

d* = argmax J(0 + d)
|ldl|<e

o Euclidean distance in parameter space

@ Stochastic gradient descent (SGD)

0+ 0+d*
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Hard to pick the threshold ¢

@ It is hard to predict the result on the parameterized distribution
o Especially for nonlinear function approximators, e.g., neural networks
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Gradient descent in distribution space

o Gradient descent in parameter space

d* = argmax J(0 + d)
|ldl|<e

o Natural gradient descent: the step size in parameter space is
determined by considering the KL divergence in the distributions
before and after the update

d* =argmax J(0 +d), s.t.Dxy(mg||mora) <€
d

o KL divergence in distribution space
e Easier to pick the distance threshold!!!
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Distance for probability distributions

@ How to calculate the distance between two points in a 2D coordinate?

distance = \/(:nl —x2)% 4+ (y1 — y2)?
o Euclidean distance

Two Beta Distributions p(x) and q(x)

plx) = beta(x; a=17.0, B=6.0)
— q(x) = beta(x; a=3.0, B=3.0)

\ @ How to calculate the distance
between two probability
distributions, p(x) and ¢(x)?

beta(x; a,8)
!
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Kullback-Leibler (KL) divergence

@ A measure of how one probability distribution, p(x), is different from
a second, reference probability distribution, ¢(z)

Dic (p(r)lla(@)) = 3 ) og ;
_ o p(z) T
Dice (p(x)la(x) = / (@)log 3 d

o A KL divergence of 0 indicates that the two distributions are identical
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KL divergence: An example

Distribution P Distribution Q )
Binomial withp=0.4,N=2 Uniform with p = 1/3
D(P| Q) =) Pl
. (2)
3

zeX
036 18 16
. —036]n<0333>+0481n( 333>+0161n( 333)
) 0. = 0.0852996
° 0 1 2 ° o 1 2

D@ Y m( Eg)
33) +0.3331n(%)

0.333 0.3
x 0 1 2 = 0-333ln( 036 ) +0.333ln< 048

Distribution P(x) | 0.36 | 0.48 |0.16 = 0.097455
Distribution Q(x) | 0.333 | 0.333 | 0.333

04

02
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KL divergence: A test

@ Suppose two Gaussian distributions:

p(x) ~N(p1,01),  q(x) ~ N(p2, 03)

e What is Dkp(p(z)||q(x))?

2 2
o o7 + — 1
]og 2 + 1 (:ulg MQ) -

01 20’2 2
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KL divergence between two Gaussians

p(x) ~ N(p1,01), Bpele] = p1, varyy (2] = E[(z — m)?] = of

Dk (p()[lq(z)) = Ep(y)[log p(z) — log ()]
=E {—1 _@om)? (z = p2)?

= Ep(a) |~ log(v2701) S +log(VaTa) +

! 2

oy Epwll@—p)?] N Ep(z) (@ — p1 4 p1 — p2)?]

=lo
6 o1 20% 20’%
e 2 91 Bpollz— p1)? + 2(2 — pa) (pa — p2) + (11 — p2)?]
= log 7+ 2
o1 207 205
2 2
> - 1
g 22 4+ 71 +(u12 p2)® 1
o1 205 2
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Back to natural gradient descent

@ How to solve this constrained optimization problem?

d* = argmax J(0 + d), s.t.Dkr(mgl||mora) <€
d

@ What tool to use?
e Turn the constrained optimization problem to an unconstrained one?
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Lagrangian multiplier

@ How to solve this constrained optimization problem?

d* = argmax J(0 +d), s.t.Dky(mg||mora) <€
d

@ Use the Lagrangian multiplier ), turn to the unconstrained
penalized objective

d* = argmax J(0 + d) — AN(Dkw(mg]|mg+a) — €)
d
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Taylor expansion for the unconstrained penalized objective

d* = argmax J(0 + d) — AX(Dxr(mp|mg1a) — €)
d

o First-order Taylor expansion for the loss
J(O+d)~ J(0)+ Ve J(O) g d

@ Second-order Taylor expansion for the KL

1
Dxr1.(mg||mo+4d) =~ §dT . Vg/ Dk, (7ol |mer)|gr=g - d

Z Wang & C Chen (NJU) Advanced Policy Gradients 17 /48



Taylor series/expansion

@ A representation of a function as an infinite sum of terms that are
calculated from the values of the function's derivatives at a single
point

@ Examples
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Taylor series/expansion

@ A representation of a function as an infinite sum of terms that are
calculated from the values of the function’s derivatives at a single
point

© r(n)(g
) =3 L@ gy

|
=0 n:
1
= @) + Fa)e—a) + T D a?
@ Examples
f]:z 1133
=l4a+ g+ o

1
— =14 z+22+23+ ..
1—=x
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Taylor expansion of J(6 + d)

o Let & = 0 + d is the independent variable
@ Thatis,z =60 a=0,v—a=d
e What is the Taylor expansion of J(0 + d)?
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Taylor expansion of J(6 + d)

o Let = 0+ d is the independent variable
@ Thatis,z=60¢,a=0,vr—a=d
e What is the Taylor expansion of J(6 + d)?

o First-order Taylor expansion for the loss:

J(0+d)~ J(0) + Vo J(0)]g-o-d
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Taylor expansion of KL

o Let & = 0 + d is the independent variable
@ Thatis,z =60 a=0,v—a=d
e What is the Taylor expansion of Dk, (mg||mg1q)?
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Taylor expansion of KL

o Let & = 0 + d is the independent variable
@ Thatis,z =6, a=0,x—a=4d
e What is the Taylor expansion of Dk, (7gl||mgra)?

@ Second-order Taylor expansion for Dk, (mg||mer):

Dk (| |mer) = D (mal|mg) + d* Vo Dxr (|70 ) |00

1
+§dTV3/ DKL(W@‘ |7’['9/) |9/:9d
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Taylor expansion of KL

1
Dk (mo|mer) ~ Dkr(mol|me) + d” Vgr Dk (o |mor)|or—o + idTVE/ Dxw (7ol |07 ) o' =0d

o ()
T’ (:C)

Dk (mo||mer) = /7r9($) log dz = /ﬂ'g(x) log o () dx—/we(az) log g/ (z) dz

independent of 6

Vg/ DKL(TI'9||7|'9/)|9/:9 = *Vg/ /71'9(:8) 10g7r9/ (:E) d[L"g/:g
= —/TFQ(.’L’)VQI log 7/ (z) dz|gr—¢

= —/ We(w) Vg/ﬂgl (IE) dl‘|9/=9

'y (x)

= —Vgl/ﬂ'gl(x) d$|g/:g
=0
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Taylor expansion of KL

1
D (mo||mer) & Diw(me|m0) + d* Ve Dkcw (ol |mo ) or=o + §dTV§/ Dxuw(mol|mer )| =0d

Vi Dkw (o |mo ) |or—o = — /m,(a:)V; log g/ (z) dz|e/—g

_ _/Tre(x)m‘)’ (m)vzlﬂ'g/(x) — valﬂ'e/(x)velﬂ—gl(x)T

B mor (x)?

dx|9/:9

= —Vf,//m)/ (ac)dac|9/:9+/7r0 (ac)Vg/log ' (x)Vg/log o/ (I)le"glzg

0

= Eac~7r9 [Vg/ log 'y (x)v.g/ log ! (m)T|9/:9]
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Hessian of KL = Fisher information matrix (FIM)

@ Hessian: A square matrix of second-order partial derivatives of a
scalar-valued function, which describes the local curvature of a
function of many variables

2f 0%f _&f
890% Ox10x2 o O0x10xn
92 f o2 f A2 f
H _ Ox20x1 (9$% O0x20Ty
L o) o%f
| Ozndz1  Orndra " 0z |

@ Fisher information: a way of measuring the amount of information
that an observable random variable X carries about an unknown
parameter 6 upon which the probability of X depends

F(Q) = Exwﬂ-e [V@ log uy:] ($)V9 log uy:] (ﬁ)T]
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Hessian of KL = Fisher information matrix (FIM)

@ The FIM is exactly the Hessian matrix of KL divergence

Vg, DKL (’/T9H7T9/) ‘9/:9 = EZNﬂ'g [Vg/ log 7T9/(£L‘)V9/ log o/ (.CL‘)T‘Q/:Q]

v

Hessian of KL FIM

1
DKL(7I'9||7r9/) ~ DKL(71'9||7T9) +dT vé)/ DKL(Tr9||7T9/)|9/:9 +§dT vg/ DKL(ﬂ'gHﬂ'g/)‘g/:g d

0 0 F(0)
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Back to Taylor expansion

1
Dkw(mgl||mo+a) = idTF(H)d

o KL divergence is roughly analogous to a distance measure between
distributions

@ Fisher information serves as a local distance metric between
distributions: how much you change the distribution if you move the
parameters a little bit in a given direction
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Back to solving the KL constrained problem

d* = argmax J(@ + d) — )\(DKL(W&HW@+d) — 6)
d
1
~ argcrlnax J(Q) + V@/J(@l)‘y:g -d— /\(§dTV§/ DKL(']TQH']TQ/)‘Q/:QCZ — 6)

1
= argmax Vg J(0')]gr—g - d — §AdTF(9)d
d

@ Set the gradient to 0:

d 1
= — T gr—g - d — =NdT F(0)d
0= (T I @l d - P FO)2)
= Vo J(0)|o—o — NF(0)d
* 1 —1 / 1 —1
d :XF (G)VG/J(0)|9/:9:XF (0)VeJ(0)
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Natural gradient descent

@ The natural gradient:

Vo (0) = F~1(0) VgJ(0)

o Natural gradient ascent:
0 =0+a-F10)§

@ How to determine the learning rate a:

1
Dxr (g || + d) =~ 5(9’ —-0O)TFB)(0 —0) <e

S(ag) F(ag) =«

2¢
o = Py
Vg Fg
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Geometric interpretation of natural policy gradient

@ Find the steepest direction for parameter updating

a4
. E —:’:‘._:_.:_1::.:~ = =0
Essentially the same ,
R g 0 /
problem as this: e
Sy DOEARC SR et A )
7
—10 0 10
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Natural gradient descent — Natural polic

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters 6o

for k=0,1,2,... do
Collect set of trajectories Dy on policy mx = 7(6k)
Estimate advantages A;”‘ using any advantage estimation algorithm
Form sample estimates for

e policy gradient gx (using advantage estimates)
o and KL-divergence Hessian / Fisher Information Matrix I:Ik

Compute Natural Policy Gradient update:

2€  p-1a
Oks1 =0k + | 77— He -
&/ H, Bk

@ Originated from natural gradient descent in supervised learning

end for

@ Very expensive to compute the inverse of Hessian matrix for a
large number of parameters
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Review of natural policy gradient

@ The gradient

o Constrain parameter update in parameter space (using Euclidean
distance)

@ The natural gradient
o Constrain parameter update in distribution space (using KL divergence)
e The meaning of “natural”: the distance metric is invariant to function

parameterization

o Fisher information matrix (FIM)
e Second-order information: a local distance metric between distributions
e The FIM is exactly the Hessian matrix of KL divergence
e Expensive to compute for a large number of parameters
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Trust region policy optimization (TRPO)

@ John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and
Pieter Abbeel, Trust Region Policy Optimization, ICML, 2015.
@ The family of statistical learning
e John Schulman — Pieter Abbeel — Andrew Ng — Michael Jordan

John Schulman's Homepage

I'm a research scientist at OpenAl. | co-lead the reinforcement learning (RL) team, where we work on (1) designing better
RL algorithms that enable agents to learn much faster in novel situati (2) igning better training i ts that
teach agents transferrable skills. We mostly use games as a testbed.

Previously, | received my PhD in Computer Science from UC Berkeley, where | had the good fortune of being advised by
Pieter Abbeel. Prior to my recent work in RL, | spent some time working on robotics, enabling robots to tie knots and
stitches and plan movement using trajectory optimization.

Publications

Presentations
Code

* Awards

Email: joschu@openai.com.
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Trust region policy optimization (TRPO)

Michael I. Jordan Cited by VIEW AL
Professor of EECS and Professor of Statistics, University of California, Berkeley, a Sinoe 2014
Verified email at cs.berkeley.edu - Homepage
machine learning  statistics computational biology  artificial intelligence ~ optimization Citations 165762 84682
h-index 160 114
i10-index 540 425
TITLE CITED BY YEAR 17000
Latent dirichlet allocation 29247 2003 12750
DM Blei, AY Ng, MI Jordan
Journal of machine Learning research 3 (Jan), 993-1022 8500
On spectral clustering: Analysis and an algorithm 7927 2002 4250
AY Ng, MI Jordan, Y Weiss
Advances in neural information processing systems, 849-856
0

2012 2013 2014 2015 2016 2017 2018 2019
Adaptive mixtures of local experts. 4089 1991

RA Jacobs, MI Jordan, SJ Nowlan, GE Hinton

Neural computation 3 (1), 79-87
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TRPO - The KL constrained problem

@ The objective function:
maximize Et [We(at‘st)flt]
0 7T00ld (atlst)

subject to E; [Dxr.[m,,, (-|s¢), mo(:|s:)]] < &

@ Also worth considering using a penalty instead of a constraint:
- [ mg(ai|st)

maximize [E A — BB, Diplro. (lse). mo(-|s
0 k Weold(at"st) t:| s t[ KL[ GOZd(| t) 0(| t)]]

e Again the KL penalized problem!
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TRPO = NPG + Line search + Monotonic improvement theorem

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters 6

for k=0,1,2,... do
Collect set of trajectories Dk on policy mx = m(0k)
Estimate advantages f\fk using any advantage estimation algorithm
Form sample estimates for

e policy gradient g« (using advantage estimates)
e and KL-divergence Hessian-vector product function f(v) = Aiv

Use CG with n., iterations to obtain xx ~ H;lg—k

Estimate proposed step Ay =~ , /ﬁ%xk
k

Perform backtracking line search with exponential decay to obtain final update
Ops1 = Ok + &/ Ak

end for
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Line search with monotonic policy improvement

Algorithm 2 Line Search for TRPO

Compute proposed policy step Ay = /Jf—fhlflk’lgk
&, Hy "8k

for j=0,1,2,...,L do
Compute proposed update 6 = 0 + of Ak
if [,gk (9) >0 and DKL(OHG;() < 6§ then
accept the update and set 01 = Ok + o Ay
break
end if
end for

o Still very expensive to compute the inverse of Hessian matrix for a
large number of parameters
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Proximal policy optimization (PPO): Clipped objective

@ The surrogate objective function:
IS s mo(ar|st) 4 z A
£ ( ) ' |:7T901d (at|st) t:| t[rt( ) t]

@ Form a lower bound via clipped importance ratios
LCHP(g) = K, [min (rt(H)At, clip(ry(6),1 — e,1 + e)At)}

o Prevent large changes of policies, constrain the policy update
e Achieve similar performance to TRPO without second-order
information (no Fisher matrix!)

A<O

LCLIF -

|
0 1 1+e LOLIP
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Proximal policy optimization (PPO): Adaptive KL penalty

Input: initial policy parameters 6y, initial KL penalty fo, target KL-divergence §
for k =0,1,2,... do
Collect set of partial trajectories Dk on policy mx = m(6k)
Estimate advantages f\f* using any advantage estimation algorithm
Compute policy update

Oxi1 = arg max Lo, (0) = BDre (0]/0k)

by taking K steps of minibatch SGD (via Adam)
if Dki(0k41]|0k) > 1.55 then

Brr1 = 2Bk
else if Dk (0k+1]|0k) < /1.5 then
By = Bk/2
end if
end for

@ Penalty coefficient 5 changes between iterations to approximately
enforce KL-divergence constraint

@ Achieve similar performance to TRPO without second-order
information (no Fisher matrix!)
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Review

@ TRPO: again the KL penalty problem

o Natural policy gradient + Monotonic policy improvement + Line search
o Still need to compute the natural gradient with Hessian matrix

e PPO

e Achieve TRPO-like performance without second-order computation
o Clipped objective, adaptive KL penalty

. [ﬂg(atyst) At]

maximize [E;
0 ﬂ-gold (at‘st)

subject to E; [Dxr.[mg,,,(-]st), mo(:|s:)] < &
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Learning objectives of this lecture

@ You should be able to...

o Know how to derive the natural policy gradient
o Be aware of several advanced algorithms, e.g., TRPO, PPO
e Enhance your mathematical skills
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Homework 1

@ Study the policy gradient algorithm in detail
@ Implement the series of policy gradient algorithms on problems 1 & 2
e Problem 1: the point maze navigation, continuous state-action space
(s,a € R%, s € [-0.5,0.5]%,a € [-0.1,0.1]?)
o Problem 2: the MuJoCo HalfCheetah, make the robot run forward
o Must use vanilla policy gradient and natural policy gradient, encourage
to use TRPO and PPO
@ Write a report introducing the algorithms and your experimentation

o Explanations, steps, evaluation results, visualizations...
o Submit the code and the report to zicanhu@smail.nju.edu.cn

®
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THE END
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