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Review: Vanilla policy gradient (REINFORCE)

REINFORCE algorithm: Loop:

1. sample {τ i} from πθ(at|st) (run the policy)

2. ∇θJ(θ) ≈ 1
N

∑N
i=1

∑T
t=0∇θ log πθ(a

i
t|sit)

∑T
t′=t γ

t′−tr(sit, a
i
t)

3. θ ← θ + α∇θJ(θ)
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Problems of vanilla policy gradient (REINFORCE)

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(a
i
t|sit)Qπ(sit, a

i
t)

θ ← θ + α∇θJ(θ)

Hard to select the step size α

Too big step: Bad policy → data collected under bad policy → we
cannot recover (in Supervised Learning, data does not depend on
neural network weights)
Too small step: Not efficient use of experience (in Supervised Learning,
data can be trivially re-used)
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Problems of vanilla policy gradient (REINFORCE)

Small changes in the policy parameters can unexpectedly lead to big
changes in the policy
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Gradient descent in parameter space

The step size in gradient descent results from solving the following
optimization problem, e.g., using line search

d∗ = argmax
||d||≤ϵ

J(θ + d)

Euclidean distance in parameter space

Stochastic gradient descent (SGD)

θ ← θ + d∗
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Hard to pick the threshold ϵ

It is hard to predict the result on the parameterized distribution

Especially for nonlinear function approximators, e.g., neural networks
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Gradient descent in distribution space

Gradient descent in parameter space

d∗ = argmax
||d||≤ϵ

J(θ + d)

Natural gradient descent: the step size in parameter space is
determined by considering the KL divergence in the distributions
before and after the update

d∗ = argmax
d

J(θ + d), s.t.DKL(πθ||πθ+d) ≤ ϵ

KL divergence in distribution space
Easier to pick the distance threshold!!!
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Distance for probability distributions

How to calculate the distance between two points in a 2D coordinate?

distance =
√
(x1 − x2)2 + (y1 − y2)2

Euclidean distance

How to calculate the distance
between two probability
distributions, p(x) and q(x)?
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Kullback-Leibler (KL) divergence

A measure of how one probability distribution, p(x), is different from
a second, reference probability distribution, q(x)

DKL(p(x)||q(x)) =
∑
i

p(xi) log
p(xi)

q(xi)

DKL(p(x)||q(x)) =
∫
x
p(x) log

p(x)

q(x)
dx

A KL divergence of 0 indicates that the two distributions are identical
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KL divergence: An example
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KL divergence: A test

Suppose two Gaussian distributions:

p(x) ∼ N (µ1, σ
2
1), q(x) ∼ N (µ2, σ

2
2)

What is DKL(p(x)||q(x))?

log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
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KL divergence between two Gaussians

p(x) ∼ N (µ1, σ
2
1), Ep(x)[x] = µ1, varp(x)[x] = E[(x− µ1)

2] = σ2
1

DKL(p(x)||q(x)) = Ep(x)[log p(x)− log q(x)]

= Ep(x)

[
− log(

√
2πσ1)−

(x− µ1)2

2σ2
1

+ log(
√
2πσ2) +

(x− µ2)2

2σ2
2

]
= log

σ2

σ1
−

Ep(x)[(x− µ1)2]

2σ2
1

+
Ep(x)[(x− µ1 + µ1 − µ2)2]

2σ2
2

= log
σ2

σ1
−

σ2
1

2σ2
1

+
Ep(x)[(x− µ1)2 + 2(x− µ1)(µ1 − µ2) + (µ1 − µ2)2]

2σ2
2

= log
σ2

σ1
+

σ2
1 + (µ1 − µ2)2

2σ2
2

−
1

2
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Back to natural gradient descent

How to solve this constrained optimization problem?

d∗ = argmax
d

J(θ + d), s.t.DKL(πθ||πθ+d) ≤ ϵ

What tool to use?

Turn the constrained optimization problem to an unconstrained one?
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Lagrangian multiplier

How to solve this constrained optimization problem?

d∗ = argmax
d

J(θ + d), s.t.DKL(πθ||πθ+d) ≤ ϵ

Use the Lagrangian multiplier λ, turn to the unconstrained
penalized objective

d∗ = argmax
d

J(θ + d)− λ(DKL(πθ||πθ+d)− ϵ)
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Taylor expansion for the unconstrained penalized objective

d∗ = argmax
d

J(θ + d)− λ(DKL(πθ||πθ+d)− ϵ)

First-order Taylor expansion for the loss

J(θ + d) ≈ J(θ) +∇θ′J(θ
′)|θ′=θ · d

Second-order Taylor expansion for the KL

DKL(πθ||πθ+d) ≈
1

2
dT · ∇2

θ′ DKL(πθ||πθ′)|θ′=θ · d
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Taylor series/expansion

A representation of a function as an infinite sum of terms that are
calculated from the values of the function’s derivatives at a single
point

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + ...

Examples
ex =?

1

1− x
=?
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Taylor series/expansion

A representation of a function as an infinite sum of terms that are
calculated from the values of the function’s derivatives at a single
point

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + ...

Examples

ex = 1 + x+
x2

2!
+

x3

3!
+ ...

1

1− x
= 1 + x+ x2 + x3 + ...
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Taylor expansion of J(θ + d)

Let θ′ = θ + d is the independent variable

That is, x = θ′, a = θ, x− a = d

What is the Taylor expansion of J(θ + d)?

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + ...
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Taylor expansion of J(θ + d)

Let θ′ = θ + d is the independent variable

That is, x = θ′, a = θ, x− a = d

What is the Taylor expansion of J(θ + d)?

First-order Taylor expansion for the loss:

J(θ + d) ≈ J(θ) +∇θ′J(θ
′)|θ′=θ · d
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Taylor expansion of KL

Let θ′ = θ + d is the independent variable

That is, x = θ′, a = θ, x− a = d

What is the Taylor expansion of DKL(πθ||πθ+d)?

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + ...
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Taylor expansion of KL

Let θ′ = θ + d is the independent variable

That is, x = θ′, a = θ, x− a = d

What is the Taylor expansion of DKL(πθ||πθ+d)?

Second-order Taylor expansion for DKL(πθ||πθ′):

DKL(πθ||πθ′) ≈ DKL(πθ||πθ) + dT∇θ′ DKL(πθ||πθ′)|θ′=θ

+
1

2
dT∇2

θ′ DKL(πθ||πθ′)|θ′=θd
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Taylor expansion of KL

DKL(πθ||πθ′) ≈ DKL(πθ||πθ) + dT∇θ′ DKL(πθ||πθ′)|θ′=θ +
1

2
dT∇2

θ′ DKL(πθ||πθ′)|θ′=θd

DKL(πθ||πθ′) =

∫
πθ(x) log

πθ(x)

πθ′(x)
dx =

∫
πθ(x) log πθ(x) dx︸ ︷︷ ︸
independent of θ′

−
∫

πθ(x) log πθ′(x) dx

∇θ′ DKL(πθ||πθ′)|θ′=θ = −∇θ′

∫
πθ(x) log πθ′(x) dx|θ′=θ

= −
∫

πθ(x)∇θ′ log πθ′(x) dx|θ′=θ

= −
∫

πθ(x)

πθ′(x)
∇θ′πθ′(x) dx|θ′=θ

= −∇θ′

∫
πθ′(x) dx|θ′=θ

= 0

Z Wang & C Chen (NJU) Advanced Policy Gradients 24 / 48



Taylor expansion of KL

DKL(πθ||πθ′) ≈ DKL(πθ||πθ) + dT∇θ′ DKL(πθ||πθ′)|θ′=θ +
1

2
dT∇2

θ′ DKL(πθ||πθ′)|θ′=θd

∇2
θ′ DKL(πθ||πθ′)|θ′=θ = −

∫
πθ(x)∇2

θ′ log πθ′(x) dx|θ′=θ

= −
∫

πθ(x)
πθ′(x)∇2

θ′πθ′(x)−∇θ′πθ′(x)∇θ′πθ′(x)
T

πθ′(x)2
dx|θ′=θ

= −∇2
θ′

∫
πθ′(x)dx|θ′=θ︸ ︷︷ ︸

0

+

∫
πθ(x)∇θ′log πθ′(x)∇θ′log πθ′(x)

Tdx|θ′=θ

= Ex∼πθ [∇θ′ log πθ′(x)∇θ′ log πθ′(x)
T |θ′=θ]
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Hessian of KL = Fisher information matrix (FIM)

Hessian: A square matrix of second-order partial derivatives of a
scalar-valued function, which describes the local curvature of a
function of many variables

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

... ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
... ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

... ∂2f
∂x2

n


Fisher information: a way of measuring the amount of information
that an observable random variable X carries about an unknown
parameter θ upon which the probability of X depends

F (θ) = Ex∼πθ
[∇θ log πθ(x)∇θ log πθ(x)

T ]
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Hessian of KL = Fisher information matrix (FIM)

The FIM is exactly the Hessian matrix of KL divergence

∇2
θ′ DKL(πθ||πθ′)|θ′=θ︸ ︷︷ ︸

Hessian of KL

= Ex∼πθ
[∇θ′ log πθ′(x)∇θ′ log πθ′(x)

T |θ′=θ]︸ ︷︷ ︸
FIM

DKL(πθ||πθ′) ≈ DKL(πθ||πθ)︸ ︷︷ ︸
0

+dT ∇θ′ DKL(πθ||πθ′)|θ′=θ︸ ︷︷ ︸
0

+
1

2
dT ∇2

θ′ DKL(πθ||πθ′)|θ′=θ︸ ︷︷ ︸
F (θ)

d

=
1

2
dTF (θ)d

=
1

2
(θ′ − θ)TF (θ)(θ′ − θ)
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Back to Taylor expansion of KL

DKL(πθ||πθ+d) ≈
1

2
dTF (θ)d

KL divergence is roughly analogous to a distance measure between
distributions

Fisher information serves as a local distance metric between
distributions: how much you change the distribution if you move the
parameters a little bit in a given direction
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Back to solving the KL constrained problem

d∗ = argmax
d

J(θ + d)− λ(DKL(πθ||πθ+d)− ϵ)

≈ argmax
d

J(θ) +∇θ′J(θ
′)|θ′=θ · d− λ(

1

2
dT∇2

θ′ DKL(πθ||πθ′)|θ′=θd− ϵ)

= argmax
d

∇θ′J(θ
′)|θ′=θ · d−

1

2
λdTF (θ)d

Set the gradient to 0:

0 =
∂

∂d

(
∇θ′J(θ

′)|θ′=θ · d−
1

2
λdTF (θ)d

)
= ∇θ′J(θ

′)|θ′=θ − λF (θ)d

d∗ =
1

λ
F−1(θ)∇θ′J(θ

′)|θ′=θ =
1

λ
F−1(θ)∇θJ(θ)
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Natural gradient descent

The natural gradient:

∇̃θJ(θ) = F−1(θ)∇θJ(θ)︸ ︷︷ ︸
ĝ

Natural gradient ascent:

θ′ = θ + α · F−1(θ)ĝ

How to determine the learning rate α:

DKL(πθ||πθ + d) ≈ 1

2
(θ′ − θ)TF (θ)(θ′ − θ) ≤ ϵ

1

2
(αĝ)TF (αĝ) = ϵ

α =

√
2ϵ

ĝTF ĝ

Z Wang & C Chen (NJU) Advanced Policy Gradients 31 / 48



Geometric interpretation of natural policy gradient

Find the steepest direction for parameter updating
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Natural gradient descent → Natural policy gradient (NPG)

Originated from natural gradient descent in supervised learning

Very expensive to compute the inverse of Hessian matrix for a
large number of parameters
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Review of natural policy gradient

The gradient

Constrain parameter update in parameter space (using Euclidean
distance)

The natural gradient

Constrain parameter update in distribution space (using KL divergence)
The meaning of “natural”: the distance metric is invariant to function
parameterization

Fisher information matrix (FIM)

Second-order information: a local distance metric between distributions
The FIM is exactly the Hessian matrix of KL divergence
Expensive to compute for a large number of parameters
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Trust region policy optimization (TRPO)

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and
Pieter Abbeel, Trust Region Policy Optimization, ICML, 2015.

The family of statistical learning
John Schulman → Pieter Abbeel → Andrew Ng → Michael Jordan
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Trust region policy optimization (TRPO)
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TRPO - The KL constrained problem

The objective function:

maximize
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
subject to Êt [DKL[πθold(·|st), πθ(·|st)]] ≤ δ

Also worth considering using a penalty instead of a constraint:

maximize
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
− βÊt [DKL[πθold(·|st), πθ(·|st)]]

Again the KL penalized problem!
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TRPO = NPG + Line search + Monotonic improvement theorem
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Line search with monotonic policy improvement

Still very expensive to compute the inverse of Hessian matrix for a
large number of parameters
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Proximal policy optimization (PPO): Clipped objective

The surrogate objective function:

LIS(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt[rt(θ)Ât]

Form a lower bound via clipped importance ratios

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
Prevent large changes of policies, constrain the policy update
Achieve similar performance to TRPO without second-order
information (no Fisher matrix!)
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Proximal policy optimization (PPO): Adaptive KL penalty

Penalty coefficient β changes between iterations to approximately
enforce KL-divergence constraint

Achieve similar performance to TRPO without second-order
information (no Fisher matrix!)
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Review

TRPO: again the KL penalty problem

Natural policy gradient + Monotonic policy improvement + Line search
Still need to compute the natural gradient with Hessian matrix

PPO

Achieve TRPO-like performance without second-order computation
Clipped objective, adaptive KL penalty

maximize
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
subject to Êt [DKL[πθold(·|st), πθ(·|st)]] ≤ δ
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Learning objectives of this lecture

You should be able to...

Know how to derive the natural policy gradient
Be aware of several advanced algorithms, e.g., TRPO, PPO
Enhance your mathematical skills
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Homework 1

Study the policy gradient algorithm in detail

Implement the series of policy gradient algorithms on problems 1 & 2

Problem 1: the point maze navigation, continuous state-action space
(s, a ∈ R2, s ∈ [−0.5, 0.5]2, a ∈ [−0.1, 0.1]2)
Problem 2: the MuJoCo HalfCheetah, make the robot run forward
Must use vanilla policy gradient and natural policy gradient, encourage
to use TRPO and PPO

Write a report introducing the algorithms and your experimentation

Explanations, steps, evaluation results, visualizations...
Submit the code and the report to zicanhu@smail.nju.edu.cn
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THE END
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