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Markov Decision Process (MDP)

M = ⟨S,A, T,R⟩

S: State space state s ∈ S (discrete/continuous)

A: Action space action a ∈ A (discrete/continuous)

T : Transition operator Ti,j,k = p(st+1 = j|st = i, at = k)

R: Reward function Ri,j,k = r(st+1 = j|st = i, at = k)
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Markov Decision Process (MDP)

A classical formalization of sequential decision making

Choosing different actions in different situations
Actions influence not just immediate rewards, but also subsequent
situations through future rewards
Involve delayed reward and the need to tradeoff immediate and
delayed reward

A mathematically idealized form of the RL problem

Precise theoretical statements can be made
Key elements of the problem’s mathematical structure, such as returns,
value functions, Bellman equations, etc
A tension between breadth of applicability and mathematical
tractability
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The Goal of RL

Find optimal policies to maximize cumulative reward

π∗ = argmax
π

Eπ

[ ∞∑
t=0

r(st, at)

]

In a trial-and-error manner
A general optimization framework for sequential decision-making
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Supervised learning vs. Sequential decision making

Supervised learning

Samples are independent and
identically distributed (i.i.d.)

Given an input, map an
optimal output

Reinforcement learning

Samples are not i.i.d.,
temporally co-related

Given an initial state, find a
sequence of optimal actions
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The agent-environment interface

Agent: The learner, decision
maker

Environment: The thing it
interact with, comprising
everything outside the agent

At each time step t = 0, 1, 2, ..., the agent...

receives some representation of the environment’s state, St ∈ S
on that basis, selects an action, At ∈ A(s)

one time step later, receives a numerical reward, Rt+1 ∈ R ⊂ R
finds itself in a new state, St+1 (transition function)

S0, A0, R1, S1, A1, R2, S2, A2, R3...
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Dynamics of the MDP p : S ×R× S ×A → [0, 1]

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s,At−1 = a}∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A(s)

The probabilities given by p completely characterize the
environment’s dynamics

Markov Property
The probability of each possible value for St and Rt depends only on
the immediately preceding state St−1 and action At−1, not at all on
earlier states and actions
p(St, Rt|St−1, At−1) =
p(St, Rt|St−1, At−1, St−2, At−2, St−3, At−3, ...)

Recall supervised learning p(Xi|Xj) = 0
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Dynamics of the MDP p : S ×R× S ×A → [0, 1]
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Goals and rewards

Reward Hypothesis – by R. S. Sutton

That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of
a received scalar signal (called reward).

The agent’s goal: maximize the total amount of reward it receives

maximize J(π) = Eπ [
∑∞

t=0 γ
trt+1]

Maximize not immediate reward, but cumulative reward in the long
run

Z Wang & C Chen (NJU) Dynamic Programming 10 / 58



Episodes and returns

The subsequence of the agent-environment interaction, episodes
St, At, Rt+1, St+1, At+1, Rt+2, ..., ST−1, AT−1, RT , ST

Each episode ends in a special state called the terminal state, ST

We seek to maximize the expected return, Gt, the reward sequence

Gt = Rt+1 +Rt+2 + ...+RT

Episodic tasks
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Discount rate γ ∈ [0, 1]

Infinite case, T = ∞
Assume that: 0 ≤ Rmin ≤ R ≤ Rmax ≤ ∞
Without discount factor: unbounded

Gt = Rt +Rt+1 +Rt+2 + ...

≥ Rmin +Rmin +Rmin + ...

= ∞

With discount factor: bounded

Gt = Rt + γRt+1 + γ2Rt+2 + ...]

≤ Rmax + γRmax + γ2Rmax + ...

=
Rmax

1− γ
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Discount rate γ ∈ [0, 1]

The expected discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3... =
∑∞

k=1 γ
kRt+k+1

The discount rate determines the present value of future rewards: a
reward received k time steps in the future is worth only γk−1 times
what it would be worth if it were received immediately

γ → 0, the agent is “myopic”, only maximizing immediate rewards

Akin to supervised learning that maximizes the log-likelihood of each
sample, log p(yi|xi)

γ → 1, the agent is “farsighted”, taking future rewards into account

Returns at successive time steps are related to each other

Gt = Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + ...)

= Rt+1 + γGt+1
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γ changes the MDP

Without discount: With discount:
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Policies and value functions

Policy: π(a|s), a mapping from states to probabilities of selecting
each possible action∑

a π(a|s) = 1
e.g., for a given state s1, four possible actions
p(a1) = 0.1, p(a2) = 0.3, p(a3) = 0.2, p(a4) = 4

Value functions: function of states or state-action pairs

State-value function Vπ(s): Estimate how good it is for the agent to be
in a given state
Action-value function Qπ(s, a): Estimate how good it is to perform a
given action in a given state
“How good”: defined in expected future rewards, i.e., expected return
Depend on what actions to take, defined w.r.t. particular ways of
acting, called policies, π

RL = estimate value functions + estimate polices + estimate both
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Value functions

Vπ, the state-value function for policy π

Vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s

]
,∀s ∈ S

Qπ, the action-value function for policy π

Qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ

[ ∞∑
k=1

γkRt+k+1|St = s,At = a

]
,∀s ∈ S, a ∈ A(s)
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Relationship between state- and action-value functions

Vπ(s) = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s

]

Qπ(s, a) = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s,At = a

]

Vπ(s) = Eπ

[ ∞∑
k=1

γkRt+k+1|St = s

]

=
∑
a

π(a|s)Eπ

[ ∞∑
k=1

γkRt+k+1|St = s,At = a

]
=

∑
a

π(a|s)Qπ(s, a) = Ea∼π(a|s)[Qπ(s, a)]
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A fundamental property: Bellman equation

Vπ(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)]

Average over all the possibilities, weighting
each by its probability of occurring

Express the relationship between the value of
a state and the values of its successor states

Transfer value information back to a state
from its successor states
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Example: Gridworld

Vπ(s) =
∑
a

π(a|s)[r + γVπ(s
′)]

Actions that would take the agent off the grid leave its location
unchanged, but also result in r = −1, otherwise r = 0

From state A, all four actions yield r = 10 and take the agent to A′

From state B, all actions yield r = 5 and the agent to B′
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Optimal policies and optimal value functions

RL tasks: find a policy that achieves a lot of reward over the long run

Value functions define a partial ordering over policies

π ≥ π′ if and only if Vπ(s) ≥ Vπ′(s),∀s ∈ S
At least one policy that is better than or equal to all other policies,
i.e., optimal policy

Optimal policies, π∗, share the same optimal value function

V∗(s) = max
π

Vπ(s), ∀s ∈ S

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A(s)

Q∗(s, a) = E[Rt+1 + γV∗(St+1)|St = s,At = a]
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Bellman optimality equation

V∗(s) = max
a

Qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

= max
a

E[Rt+1 + γV∗(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γV∗(s
′)]

The value of a state under an optimal policy must equal the expected
return for the best action from that state

Z Wang & C Chen (NJU) Dynamic Programming 21 / 58



Bellman optimality equation

Q∗(s, a) = E[Rt+1 + γmax
a′

Q∗(St+1, a
′)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

Q∗(s
′, a′)]

V∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γV∗(s
′)]
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Determine optimal policies from optimal value functions

For V∗: a one-step search

Actions that appear best after one-step search will be optimal actions

For Q∗: no need to do a one-step-ahead search

a∗ = argmaxa Q∗(s, a)
The optimal action-value function allows optimal actions to be selected
without having to know anything about possible successor states and
their values, i.e., without having to know anything about the
environment’s dynamics
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Example: Gridworld
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Review

State transition function - dynamics of the MDP

Episodes and returns

The discount rate

Policies and value functions

State-value functions, action-value functions
Their relationships
Bellman equation

Optimal policies and value functions

Bellman optimality equation
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Dynamic Programming (DP)

It refers to simplifying a complicated problem by breaking it down
into simpler sub-problems in a recursive manner.

Finding the shortest path in a graph using
optimal substructure

A straight line: a single edge,
a wavy line: a shortest path

The bold line: the overall shortest path from
start to goal
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Dynamic Programming (DP)

A collection of algorithms that can be used to compute optimal
policies given a perfect model of the environment (MDP)

Of limited utility in RL both because of their assumption of a perfect
model and because of their great computational expense
Important theoretically, provide an essential foundation for the
understanding of RL methods
RL methods can be viewed as attempts to achieve much the
same effect as DP, only with less computation and without assuming
a perfect model of the environment
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Policy evaluation (Prediction)

Compute the state-value function Vπ for an arbitrary policy π

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)]

If the environment’s dynamics are completely known

In principal, the solution is a straightforward computation
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Iterative policy evaluation

Consider a sequence of approximate value functions V0, V1, V2, ...

The initial approximation, V0, is chosen arbitrarily

Use the Bellman equation for Vπ as an update rule

Vk+1(s) = Eπ[Rt+1 + γVk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)]

Vk = Vπ is a fixed point for this update rule

The sequence {Vk} converges to Vπ as k → ∞ under the same
conditions that guarantee the existence of Vπ
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Iterative policy evaluation

The updates as being done in a sweep through the state space
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Example: Gridworld

Four actions deterministically case the corresponding state transitions

e.g., p(6,−1|5, right) = 1, p(7,−1|7, right) = 1
p(10, r|5, right) = 0,∀r ∈ R

Test: If every action will succeed in the next state with probability
90%, then what are the state transition probabilities?

p(6,−1|5, right) =? p(5,−1|5, right) =? p(5, 0|5, right) =?

Z Wang & C Chen (NJU) Dynamic Programming 32 / 58



The agent follows the equiprobable random policy

The final estimate is in fact Vπ

The negation of the expected number of steps from that state until
termination
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Tests...

Write the value function Vπ for two sweeps

Case I: a random policy, Rt = 1 when transiting to the right bottom
cell, Rt = 0 on all other transitions
Case II: Rt = −1 on all transitions, a policy that always goes to right
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Policy improvement

Our reason for computing the value function for a policy is to help
find better policies

We have determined the value function Vπ for policy π
we would like to know whether or not we should change the policy to
deterministically choose an action a ̸= π(s)
We know how good it is to follow the current policy from s, e.g., Vπ,
but would it be better or worse to change to the new policy, π′?

Consider selecting a in s and thereafter following the existing policy π

Qπ(s, a) = E[Rt+1 + γVπ(St+1)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)]

If Qπ(s, a) ≥ Vπ(s)?
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Policy improvement theorem

Let π and π′ be any pair of deterministic policies such that,

Qπ(s, π
′(s)) ≥ Vπ(s), ∀s ∈ S.

Then the policy π′ must be as good as, or better than, π.
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Policy improvement theorem

Vπ(s) ≤ Qπ(s, π
′(s))

= E[Rt+1 + γVπ(St+1)|St = s,At = π′(s)]

= Eπ′ [Rt+1 + γVπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γQπ(St+1, π
′(St+1))|St = s]

= Eπ′ [Rt+1 + γEπ′ [Rt+2 + γVπ(St+2)|St+1, At+1 = π′(St+1)]|St = s]

= Eπ′ [Rt+1 + γRt+2 + γ2Vπ(St+2)|St = s]

≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3Vπ(St+3)|St = s]

≤ ...

≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...|St = s]

= Vπ′(s)
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Policy improvement

Consider the new greedy policy, π′, selecting at each state the action
that appears best according to Qπ(s, a)

π′(s) = argmax
a

Qπ(s, a)

= argmax
a

E[Rt+1 + γVπ(St+1)|St = s,At = a]

= argmax
a

∑
s′

p(s′, r|s, a)[r + γVπ(s
′)]

The process of making a new policy that improves on an original
policy, by making greedy w.r.t. the value function of the original
policy, is called policy improvement

The greedy policy meets the conditions of the policy improvement
theorem
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Proof

Note that π(a|s) ∈ [0, 1],
∑

a π(a|s) = 1

Vπ′(s) = max
a

∑
s′

p(s′, r|s, a)[r + γVπ(s
′)]

≥
∑
a

π(a|s)
∑
s′

p(s′, r|s, a)[r + γVπ(s
′)]
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Policy improvement

Suppose the new policy π′ is as good as, but not better than, the old
policy π, then Vπ′ = Vπ

Vπ′(s) = max
a

E[Rt+1 + γVπ′(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γVπ′(s′)]

The same as the Bellman optimality equation
Both π and π′ must be optimal policies

Policy improvement must give us a strictly better policy except when
the original policy is already optimal

Z Wang & C Chen (NJU) Dynamic Programming 40 / 58



Table of Contents

1 Finite Markov Decision Processes

2 Dynamic Programming
Policy evaluation and policy improvement
Policy iteration and value iteration

Z Wang & C Chen (NJU) Dynamic Programming 41 / 58



Policy iteration

Using policy improvement theorem, we can obtain a sequence of
monotonically improving policies and value functions

E: Policy Evaluation, I: Policy Improvement

π0
E−→ Vπ0

I−→ π1
E−→ Vπ1

I−→ π2
E−→ ...

I−→ π∗
E−→ V∗

This process is guaranteed to converge to an optimal policy and
optimal value function in a finite number of iterations

Each policy is guaranteed to be a strictly improvement over the
previous one unless it is already optimal
A finite MDP has only a finite number of policies
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Policy iteration
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Policy iteration often converges in very few iterations

The final estimate is in fact vπ
The negation of the expected number of steps from that state until
termination
The last policy is guaranteed only to be an improvement over the
random policy, but in this case it, and all policies after the third step of
policy evaluation, are optimal
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Value iteration

Each policy iteration involves policy evaluation, which may be a
protracted iterative computation requiring multiple sweeps through
the state set
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Truncate policy evaluation?

Policy evaluation iterations beyond the first three have no effect on
the corresponding greedy policy
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Value iteration = Truncate policy evaluation for one sweep

In policy iteration, stop policy evaluation after just one sweep

Vk+1(s) =
∑
s′,r

p(s′, r|s, πk(s))[r + γVk(s
′)]

πk+1(s) = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γVk+1(s
′)]

Combine into one operation, called value iteration algorithm

Vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)]

For arbitrary V0, the sequence {Vk} converges to V∗ under the same
conditions that guarantee the existence of V∗
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Value iteration

Bellman optimality equation

V∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γV∗(s
′)]

Value iteration

Vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)]

Turn Bellman optimality equation into an update rule
Directly approximate the optimal state-value function, V∗
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Value iteration vs. policy evaluation

Backup diagram for
value iteration

Use Bellman optimality
equation as update rule

Approximate the optimal
state-value function V∗

Backup diagram for
policy evaluation

Use Bellman equation as
update rule

Approximate the state-value
function of a given policy Vπ
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Value iteration algorithm

One sweep = one sweep of policy evaluation + one sweep of policy
improvement
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Tests...

Write the value function V (s), ∀s for two sweeps, using the value
iteration algorithm

Rt = 1 when transiting to the right bottom cell, Rt = 0 on all other
transitions
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Properties of dynamic programming

Bootstrapping: Update estimates on the basis of other estimates

Estimate the values of states based on estimates of the values of
successor states

Model-based: Require the accurate model of the environment

The complete probability distributions of all possible transitions,
p(s′, r|s, a)

Algorithms Bootstrapping? Model-based?

Dynamic programming Yes Yes
Monte Carlo methods No No

Temporal-difference learning Yes No
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Why is DP fundamental and important?

Important theoretically, provide an essential foundation for the
understanding of RL methods

RL methods can be viewed as attempts to achieve much the same
effect as DP, only with less computation and without assuming a
perfect model of the environment
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Why is DP fundamental and important?
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Review

Policy evaluation

Use Bellman equation as the update rule
Guaranteed to converge

Policy improvement

Make greedy w.r.t. the value function of the original policy

Policy iteration

Alternate between policy evaluation and policy improvement steps

Value iteration

Truncate policy evaluation for one sweep
Use Bellman optimality equation as the update rule

Z Wang & C Chen (NJU) Dynamic Programming 55 / 58



Learning objectives of this lecture

You should be able to...

Know elements of finite MDPs, the agent-environment interface

(Discounted) returns and episodes, polices and value functions,
Bellman (optimality)

Understand and be able to use dynamic programming

Know policy evaluation and policy improvement, policy iteration and
value iteration
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THE END
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